In daily social interactions, we need to be able to navigate efficiently through our social environment. According to Dennett (1971), explaining and predicting others’ behavior with reference to mental states (adopting the intentional stance) allows efficient social interaction. Today we also routinely interact with artificial agents: from Apple’s Siri to GPS navigation systems. In the near future, we might start casually interacting with robots. This paper addresses the question of whether adopting the intentional stance can also occur with respect to artificial agents. We propose a new tool to explore if people adopt the intentional stance toward an artificial agent (humanoid robot). The tool consists in a questionnaire that probes participants’ stance by requiring them to choose the likelihood of an explanation (mentalistic vs. mechanistic) of a behavior of a robot iCub depicted in a naturalistic scenario (a sequence of photographs). The results of the first study conducted with this questionnaire showed that although the explanations were somewhat biased toward the mechanistic stance, a substantial number of mentalistic explanations were also given. This suggests that it is possible to induce adoption of the intentional stance toward artificial agents, at least in some contexts.
In joint action, multiple people coordinate their actions to perform a task together. This often requires precise temporal and spatial coordination. How do co-actors achieve this? How do they coordinate their actions toward a shared task goal? Here, we provide an overview of the mental representations involved in joint action, discuss how co-actors share sensorimotor information and what general mechanisms support coordination with others. By deliberately extending the review to aspects such as the cultural context in which a joint action takes place, we pay tribute to the complex and variable nature of this social phenomenon.
Most experimental protocols examining joint attention with the gaze cueing paradigm are “observational” and “offline”, thereby not involving social interaction. We examined whether within a naturalistic online interaction, real-time eye contact influences the gaze cueing effect (GCE). We embedded gaze cueing in an interactive protocol with the iCub humanoid robot. This has the advantage of ecological validity combined with excellent experimental control. Critically, before averting the gaze, iCub either established eye contact or not, a manipulation enabled by an algorithm detecting position of the human eyes. For non-predictive gaze cueing procedure (Experiment 1), only the eye contact condition elicited GCE, while for counter-predictive procedure (Experiment 2), only the condition with no eye contact induced GCE. These results reveal an interactive effect of strategic (gaze validity) and social (eye contact) top-down components on the reflexive orienting of attention induced by gaze cues. More generally, we propose that naturalistic protocols with an embodied presence of an agent can cast a new light on mechanisms of social cognition.
Gaze-following behaviour is considered crucial for social interactions which are influenced by social similarity. We investigated whether the degree of similarity, as indicated by the perceived age of another person, can modulate gaze following. Participants of three different age-groups (18–25; 35–45; over 65) performed an eye movement (a saccade) towards an instructed target while ignoring the gaze-shift of distracters of different age-ranges (6–10; 18–25; 35–45; over 70). The results show that gaze following was modulated by the distracter face age only for young adults. Particularly, the over 70 year-old distracters exerted the least interference effect. The distracters of a similar age-range as the young adults (18–25; 35–45) had the most effect, indicating a blurred own-age bias (OAB) only for the young age group. These findings suggest that face age can modulate gaze following, but this modulation could be due to factors other than just OAB (e.g., familiarity).
Eye contact constitutes a strong communicative signal in human interactions and has been shown to modulate various cognitive processes and states. However, little is known about its impact on gazemediated attentional orienting in the context of its interplay with strategic top-down control. Here, we aimed at investigating how the social component of eye contact interacts with the top-down strategic control. To this end, we designed a gaze cuing paradigm with the iCub humanoid robot, in which iCub either established eye contact with the participants before averting its gaze or avoided their eyes. Across four experiments, we manipulated gaze cue validity to either elicit strategic top-down inhibitory activity (25% validity) or to allow for relaxing the control mechanisms (50% validity). Also, we manipulated the stimulus-onset-asynchrony (SOA) to examine the dynamics of the top-down modulatory effects. Our results showed that eye contact influenced the gaze cuing effect when the strategic control was not required, by prolonging the prioritized processing of the gazed-at locations. Thus, the effect was observed only when the measurement was taken after a sufficient amount of time (1,000 ms SOA). However, when inhibitory control was necessary (25% validity), the social component was not potent enough to exert influence over the gaze cuing effect independently. Overall, we propose that strategic top-down control is the primary driving force over the gaze cuing effect and that the social aspect plays a modulatory effect by prolonging prioritized processing of gazed-at locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.