The data collected under the European Market Infrastructure Regulation (“EMIR data”) provide authorities with voluminous transaction-by-transaction details on derivatives but their use poses numerous challenges. To overcome one major challenge, this chapter draws from eight different data sources and develops a greedy algorithm to obtain a new counterparty sector classification. We classify counterparties’ sector for 96% of the notional value of outstanding contracts in the euro area derivatives market. Our classification is also detailed, comprehensive, and well suited for the analysis of the derivatives market, which we illustrate in four case studies. Overall, we show that our algorithm can become a key building block for a wide range of research- and policy-oriented studies with EMIR data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.