Depressive disorders are heterogeneous diseases, and the complexity of symptoms has led to the formulation of several aethiopathological hypotheses. This heterogeneity may account for the following open issues about antidepressant therapy: (i) antidepressants show a time lag between pharmacological effects, within hours from acute drug administration, and therapeutic effects, within two-four weeks of subchronic treatment; (ii) this latency interval is critical for the patient because of the possible further mood worsening that may result in suicide attempts for the seemingly ineffective therapy and for the apparent adverse effects; (iii) and only 60-70 % of treated patients successfully respond to therapy. In this review, the complexity of the biological theories that try to explain the molecular mechanisms of these diseases is considered, encompassing (i) the classic "monoaminergic hypothesis" alongside the updated hypothesis according to which long-term therapeutical action of antidepressants is mediated by intracellular signal transduction pathways and (ii) the hypothalamic-pituitary-adrenal axis involvement. Although these models have guided research efforts in the field for decades, they have not generated a compelling and conclusive model either for depression pathophysiology or for antidepressant drugs' action. So, other emerging theories are discussed: (iii) the alterations of neuroplasticity and neurotrophins in selective vulnerable cerebral areas; (iv) the involvement of inflammatory processes; (v) and the alterations in mitochondrial function and neuronal bioenergetics. The focus is put on the molecular and theoretical links between all these hypotheses, which are not mutually exclusive but otherwise tightly correlated, giving an integrated and comprehensive overview of the neurobiology of depressive disorders.
Two decades of investigations have failed to unequivocally clarify the functions and the molecular nature of imidazoline-2 receptors (I2R). However, there is robust pharmacological evidence for the functional modulation of monoamino oxidase (MAO) and other important enzyme activities by I2 site ligands. Some compounds of this class proved to be active experimental tools in preventing both experimental pain and opioid tolerance and dependence. Unfortunately, even though these compounds bind with high potency to central I2 sites, they fail to represent a valid clinical opportunity due to their pharmacokinetic, selectivity or side-effects profile. This paper presents the preclinical profile of a novel I2 ligand (2-phenyl-6-(1H-imidazol-1yl) quinazoline; [CR4056]) that selectively inhibits the activity of human recombinant MAO-A in a concentration-dependent manner. A sub-chronic four day oral treatment of CR4056 increased norepinephrine (NE) tissue levels both in the rat cerebral cortex (63.1% ±4.2%; P < 0.05) and lumbar spinal cord (51.3% ± 6.7%; P < 0.05). In the complete Freund’s adjuvant (CFA) rat model of inflammatory pain, CR4056 was found to be orally active (ED50 = 5.8 mg/kg, by mouth [p.o.]). In the acute capsaicin model, CR4056 completely blocked mechanical hyperalgesia in the injured hind paw (ED50 = 4.1 mg/kg, p.o.; ED100 = 17.9 mg/kg, p.o.). This effect was dose-dependently antagonized by the non-selective imidazoline I2/α2 antagonist idazoxan. In rat models of neuropathic pain, oral administration of CR4056 significantly attenuated mechanical hyperalgesia and allodynia. In summary, the present study suggests a novel pharmacological opportunity for inflammatory and/or neuropathic pain treatment based on selective interaction with central imidazoline-2 receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.