The Cancer Genome Atlas revealed the genomic landscapes of human cancers. In parallel, immunotherapy is transforming the treatment of advanced cancers. Unfortunately, the majority of patients do not respond to immunotherapy, making the identification of predictive markers and the mechanisms of resistance an area of intense research. To increase our understanding of tumor-immune cell interactions, we characterized the intratumoral immune landscapes and the cancer antigenomes from 20 solid cancers and created The Cancer Immunome Atlas (https://tcia.at/). Cellular characterization of the immune infiltrates showed that tumor genotypes determine immunophenotypes and tumor escape mechanisms. Using machine learning, we identified determinants of tumor immunogenicity and developed a scoring scheme for the quantification termed immunophenoscore. The immunophenoscore was a superior predictor of response to anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) and anti-programmed cell death protein 1 (anti-PD-1) antibodies in two independent validation cohorts. Our findings and this resource may help inform cancer immunotherapy and facilitate the development of precision immuno-oncology.
We introduce quanTIseq, a method to quantify the fractions of ten immune cell types from bulk RNA-sequencing data. quanTIseq was extensively validated in blood and tumor samples using simulated, flow cytometry, and immunohistochemistry data. quanTIseq analysis of 8000 tumor samples revealed that cytotoxic T cell infiltration is more strongly associated with the activation of the CXCR3/CXCL9 axis than with mutational load and that deconvolution-based cell scores have prognostic value in several solid cancers. Finally, we used quanTIseq to show how kinase inhibitors modulate the immune contexture and to reveal immune-cell types that underlie differential patients’ responses to checkpoint blockers. Availability: quanTIseq is available at http://icbi.at/quantiseq . Electronic supplementary material The online version of this article (10.1186/s13073-019-0638-6) contains supplementary material, which is available to authorized users.
Motivation The composition and density of immune cells in the tumor microenvironment (TME) profoundly influence tumor progression and success of anti-cancer therapies. Flow cytometry, immunohistochemistry staining or single-cell sequencing are often unavailable such that we rely on computational methods to estimate the immune-cell composition from bulk RNA-sequencing (RNA-seq) data. Various methods have been proposed recently, yet their capabilities and limitations have not been evaluated systematically. A general guideline leading the research community through cell type deconvolution is missing. Results We developed a systematic approach for benchmarking such computational methods and assessed the accuracy of tools at estimating nine different immune- and stromal cells from bulk RNA-seq samples. We used a single-cell RNA-seq dataset of ∼11 000 cells from the TME to simulate bulk samples of known cell type proportions, and validated the results using independent, publicly available gold-standard estimates. This allowed us to analyze and condense the results of more than a hundred thousand predictions to provide an exhaustive evaluation across seven computational methods over nine cell types and ∼1800 samples from five simulated and real-world datasets. We demonstrate that computational deconvolution performs at high accuracy for well-defined cell-type signatures and propose how fuzzy cell-type signatures can be improved. We suggest that future efforts should be dedicated to refining cell population definitions and finding reliable signatures. Availability and implementation A snakemake pipeline to reproduce the benchmark is available at https://github.com/grst/immune_deconvolution_benchmark. An R package allows the community to perform integrated deconvolution using different methods (https://grst.github.io/immunedeconv). Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.