The cellular abundance of the cyclin-dependent kinase (Cdk) inhibitor p27 is regulated by the ubiquitinproteasome system. Activation of p27 degradation is seen in proliferating cells and in many types of aggressive human carcinomas. p27 can be phosphorylated on threonine 187 by Cdks, and cyclin E/Cdk2 overexpression can stimulate the degradation of wild-type p27, but not of a threonine 187-to-alanine p27 mutant [p27(T187A)]. However, whether threonine 187 phosphorylation stimulates p27 degradation through the ubiquitin-proteasome system or an alternative pathway is still not known. Here, we demonstrate that p27 ubiquitination (as assayed in vivo and in an in vitro reconstituted system) is cell-cycle regulated and that Cdk activity is required for the in vitro ubiquitination of p27. Furthermore, ubiquitination of wild-type p27, but not of p27(T187A), can occur in G 1 -enriched extracts only upon addition of cyclin E/Cdk2 or cyclin A/Cdk2. Using a phosphothreonine 187 site-specific antibody for p27, we show that threonine 187 phosphorylation of p27 is also cell-cycle dependent, being present in proliferating cells but undetectable in G 1 cells. Finally, we show that in addition to threonine 187 phosphorylation, efficient p27 ubiquitination requires formation of a trimeric complex with the cyclin and Cdk subunits. In fact, cyclin B/Cdk1 which can phosphorylate p27 efficiently, but cannot form a stable complex with it, is unable to stimulate p27 ubiquitination by G 1 extracts. Furthermore, another p27 mutant [p27(CK − )] that can be phosphorylated by cyclin E/Cdk2 but cannot bind this kinase complex, is refractory to ubiquitination. Thus throughout the cell cycle, both phosphorylation and trimeric complex formation act as signals for the ubiquitination of a Cdk inhibitor.
IntroductionIndoleamine 2,3-dioxygenase (IDO) is a key enzyme in the tryptophan metabolism that catalyzes the initial rate-limiting step of tryptophan degradation along the kynurenine pathway. 1 Tryptophan starvation by IDO consumption inhibits T-cell activation, 1,2 while products of tryptophan catabolism, such as kynurenine derivatives and O 2 -free radicals, regulate T-cell proliferation and survival. 1,3 Thus, IDO has been shown to exert an immunosuppressive activity, and cell populations, including regulatory dendritic cells (DCs) and bone marrow (BM)-derived mesenchymal stem cells (MSCs), expressing IDO have the capacity to suppress T-cell responses to auto-and alloantigens. 4,5 A wide variety of human solid tumors express IDO. 6 More recently, we demonstrated that also acute myeloid leukemia (AML) cells, but not their normal counterparts (ie, CD34 ϩ hematopoietic stem/progenitor cells [HSCs]), express an active IDO protein, which converts tryptophan into kynurenine and inhibits allogeneic T-cell proliferation. 7 Naturally arising CD4 ϩ CD25 ϩ Foxp3 ϩ T regulatory (T reg ) cells are known to suppress most types of immune response, 8,9 including antitumor immunity. [10][11][12][13] IDO is expressed and is functionally active in placenta, which, in turn, is infiltrated by CD4 ϩ CD25 ϩ T reg cells. [14][15][16] Moreover, Candida albicans infection increases the number of T reg cells because of IDO induction in host antigenpresenting cells (APCs). 17 In human cancers, tumor-draining lymph nodes contain IDO-expressing DCs that enhance T reg cell function. 18 These data suggest the close relationship between IDO activity and the occurrence of T reg cells, 19 but the mechanism governing the generation of T reg cells by IDO-expressing tumors is presently unknown.In the present study, we investigated whether the expression of IDO by AML cells may play a direct role in the development of T reg cells. Materials and methods CellsAll human samples were obtained after informed consent was signed, according to institutional guidelines. Approval was obtained from Bologna Hospital Ethical Committee. Buffy coats were obtained from healthy adults during the preparation of transfusion products. BM and/or peripheral blood (PB) samples including at least 70% leukemic cells were harvested from 76 patients with AML at diagnosis. CD3 ϩ and CD4 ϩ cells were purified from the mononuclear cell (MNC) fraction by MiniMacs high-gradient magnetic separation column (Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer's instructions (purity of CD3 ϩ and CD4 ϩ cell populations was always greater than 95%). MSCs were generated from BM cells as previously reported. 20 Murine A20 and CT26 cell lines were obtained from the American Type Culture Collection (ATCC; Rockville, MD) and maintained in RPMI 1640 (Whittaker Bioproducts, Walkersville, MD) or MEM (Whittaker Bioproducts) supplemented with 10% FCS (Sera Lab, Crawley Down, United The online version of this manuscript contains a data supplement.The publication costs of ...
Fe65 is a protein mainly expressed in several districts
Immune tolerance is a central mechanism counteracting tumor-specific immunity and preventing effective anticancer immunotherapy. Induction of tolerance requires a specific environment in which tolerogenic dendritic cells (DCs) play an essential role deviating the immune response away from effective immunity. It was recently shown that maturation of DCs in the presence of PGE2 results in upregulation of indoleamine 2,3-dioxygenase (IDO) providing a potential mechanism for the development of DC-mediated Tcell tolerance. Here, we extend these findings, demonstrating a concomitant induction of IDO and secretion of soluble CD25 after DC maturation in the presence of PGE2. While maturation of DCs induced IDO expression on transcriptional level, only integration of PGE2 signaling led to up-regulation of functional IDO protein as well as significant expression of cell-surface and soluble CD25 protein. As a consequence, T-cell proliferation and cytokine production were significantly inhibited, which was mediated mainly by IDO-induced tryptophan depletion. Of importance, we demonstrate that different carcinoma entities associated with elevated levels of PGE2 coexpress CD25 and IDO in peritumoral dendritic cells, suggesting that PGE2 might influence IDO expression in human DCs in the tumor environment. We therefore suggest PGE2 to be a mediator of early events during induction of immune tolerance in cancer.
The -amyloid precursor protein (APP) 1 is an integral membrane protein from which the -amyloid peptide is generated. The -amyloid peptide forms the extracellular insoluble aggregates characteristic of Alzheimer's disease. The function of APP and the regulation of the proteolytic events generating the -amyloid peptide are still unknown. APP was expected to be involved in signal transduction processes, because of its transmembrane topology. Three main isoforms of APP exist, generated by alternative splicing (APP 770 , APP 751 , and APP 695 ) and all possessing the same intracellular domain (reviewed in Ref.1). Although little is known about the putative extracellular ligand(s) for APP, several results describe the interaction of its intracellular domain with other proteins. These include the interaction with the heterotrimeric G protein Go (2), a 59-kDa ubiquitously expressed protein named APP-BP1 (3), the X11 protein (4), the neuron-abundant Fe65 protein, and an Fe65-like protein (4 -6). It was shown that intact APP binds to oligomeric Go protein and that the intracellular region of APP spanning residues 657-676 activates Go (2, 7). Furthermore, the interaction of APP with a monoclonal antibody directed against its extracellular domain mimics a ligand-receptor binding that triggers Go activation (7). APP-BP1 interacts both in vitro and in vivo with the carboxyl-terminal region of APP, which represents its intracellular domain. This protein is homologous to the product of the Arabidopsis auxin resistance gene AXR1 and to a Caenorabditis elegans protein of unknown function (3).The Fe65 gene is mainly expressed in the neurons of specific regions of the mammalian nervous system (8, 9) and encodes a protein containing two different types of protein-protein interaction domains: the WW domain (reviewed in Ref. 10) and the phosphotyrosine interaction/phosphotyrosine binding (PID/ PTB) domain (reviewed in Ref. 11). The latter was found in the oncoprotein Shc (12, 13), in its relatives , in other apparently unrelated proteins, such as Numb, X11, and Dab (15), and in insulin receptor substrate 1 (IRS-1) and 17). The PID/PTB domains interact with phosphotyrosine residues located in the intracellular domains of growth factor receptors, such as EGF-R, trkA, and plateletderived growth factor receptor in the case of Shc (13) and insulin receptor and interleukin 4 receptor in the case of IRS-1 (16). In contrast, the Fe65 region containing the two PID/PTB domains was demonstrated to interact with the intracellular domain of APP (5).All the PID/PTB domains present in the Shc family, IRS-1, and Fe65 interact with intracellular regions of membrane proteins containing the consensus motif ⌽XNPXY (where ⌽ is hydrophobic and X is any amino acid). However, Fe65 possesses at least two unique characteristics: (i) although all the known members of the PID/PTB family contain only one PID/ PTB element (13), Fe65 is an exception, because its sequence interacting with APP shows two consecutive PID/PTB domains; and (ii) although the Tyr prese...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.