Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination and show here that, in mice, sustained Sox2 expression blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination and its potential to play a role in disorders of myelination in the peripheral nervous system.
The interaction between the negative cis-element (AldA-NRE) and p97 repressor nuclear protein is a key step in modulating transcription of the human and mouse aldolase A (AldA) gene during the cell cycle and di¡erentiation. In an attempt to clarify the role of transcriptional repression in regulating gene expression, we puri¢ed, from HeLa cells, the nuclear protein that speci¢cally binds to the AldA negative regulatory element (NRE). Matrix-assisted laser desorption ionization-time of £ight analysis and examination of protein pro¢les from the SwissProt database revealed that the previously de¢ned p97 repressor is ZNF224, a zinc ¢nger protein.We demonstrate that ZNF224, a Kruppel-like zinc ¢nger transcription factor, is the repressor protein that speci¢cally binds to the negative cis-element AldA-NRE and a¡ects the AldA-NREmediated transcription. ß 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Bone and muscle have been recognized as endocrine organs since they produce and secrete “hormone-like factors” that can mutually influence each other and other tissues, giving rise to a “bone–muscle crosstalk”. In our study, we made use of myogenic (C2C12 cells) and osteogenic (2T3 cells) cell lines to investigate the effects of muscle cell-produced factors on the maturation process of osteoblasts. We found that the myogenic medium has inhibitory effects on bone cell differentiation and we identified sclerostin as one of the myokines produced by muscle cells. Sclerostin is a secreted glycoprotein reportedly expressed by bone/cartilage cells and is considered a negative regulator of bone growth due to its role as an antagonist of the Wnt/β-catenin pathway. Given the inhibitory role of sclerostin in bone, we analyzed its expression by muscle cells and how it affects bone formation and homeostasis. Firstly, we characterized and quantified sclerostin synthesis by a myoblast cell line (C2C12) and by murine primary muscle cells by Western blotting, real-time PCR, immunofluorescence, and ELISA assay. Next, we investigated in vivo production of sclerostin in distinct muscle groups with different metabolic and mechanical loading characteristics. This analysis was done in mice of different ages (6 weeks, 5 and 18 months after birth) and revealed that sclerostin expression is dynamically modulated in a muscle-specific way during the lifespan. Finally, we transiently expressed sclerostin in the hind limb muscles of young mice (2 weeks of age) via in vivo electro-transfer of a plasmid containing the SOST gene in order to investigate the effects of muscle-specific overproduction of the protein. Our data disclosed an inhibitory role of the muscular sclerostin on the bones adjacent to the electroporated muscles. This observation suggests that sclerostin released by skeletal muscle might synergistically interact with osseous sclerostin and potentiate negative regulation of osteogenesis possibly by acting in a paracrine/local fashion. Our data point out a role for muscle as a new source of sclerostin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.