Abstract:Molybdenum is an essential element for life, with growing production due to a constantly expanding variety of industrial applications. The potentially harmful effects of Mo on the environment, and on human and ecosystem health, require knowledge of Mo behavior in mining-affected environments. Mo is usually present in trace amounts in ore deposits, but mining exploitation can lead to wastes with very high Mo concentrations (up to 4000 mg/kg Mo for tailings), as well as soil, sediments and water contamination in surrounding areas. In mine wastes, molybdenum is liberated from sulfide mineral oxidation and can be sorbed onto secondary Fe(III)-minerals surfaces (jarosite, schwertmannite, ferrihydrite) at moderately acidic waters, or taken up in secondary minerals such as powellite and wulfenite at neutral to alkaline pH. To date, no Mo-metabolising bacteria have been isolated from mine wastes. However, laboratory and in-situ experiments in other types of contaminated land have suggested that several Mo-reducing and -oxidising bacteria may be involved in the cycling of Mo in and from mine wastes, with good potential for bioremediation. Overall, a general lack of data is highlighted, emphasizing the need for further research on the contamination, geochemistry, bio-availability and microbial cycling of Mo in mining-affected environments to improve environmental management and remediation actions.
The analysis of geochemical markers is a known valid tool to explore the water sources and understand the main factors affecting natural water quality, which are known issues of interest in environmental science. This study reports the application of geochemical markers to characterize and understand the recharge areas of the multi-layer urban aquifer of Como city (northern Italy). This area presents a perfect case study to test geochemical markers: The hydrogeological setting is affected by a layered karst and fractured aquifer in bedrock, a phreatic aquifer hosted in Holocene sediments and connected with a large freshwater body (Lake Como); the aquifers recharge areas and the water geochemistry are unknown; the possible effect of the tectonic setting on water flow was overlooked. In total, 37 water samples were collected including water from two stacked aquifers and surface water to characterize hydrochemical features. Moreover, six sediment samples in the recent palustrine deposits of the Como subsurface were collected from cores and analyzed to understand the main geochemistry and mineralogy of the hosting material. The chemical analyses of water allow to observe a remarkable difference between the shallow and deep aquifers of the study area, highlighting different recharge areas, as well as a different permanence time in the aquifers. The sediment geochemistry, moreover, confirms the differences in trace elements derived from sediment-water interaction in the aquifers. Finally, an anomalous concentration of As in the Como deep aquifer was observed, suggesting the need of more detailed analyses to understand the origin of this element in water. This study confirms the potentials of geochemical markers to characterize main factors affecting natural water quality, as well as a tool for the reconstruction of recharge areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.