pH measuring and monitoring is fundamental to understand or control many chemical processes in biological, industrial or environmental fields. Potentiometric measurements by a glass electrode is the most common method to measure pH, although single-use paper strips are also widely used. Other methods include the use of hydrogen, quinhydron, and antimony electrodes, the imaging using pH-sensitive indicators such as dyes or proteins, and the use of ion-selective field effect transistor (ISFET). Due to the chemical reactivity of both sides of its 2D structure, nanometer thickness, high electron mobility, high reactivity to oxygen groups such as OH-, and ultrafast optical response, graphene has the potential to be used for the fabrication of nanoscale, wide-range, high-sensitivity and flexible pH sensors. This review describes how graphene, graphene oxide and reduced graphene oxide can be used to fabricate pH-sensitive devices (e.g. solution-gated FETs, solid-gate FETs, electrochemical sensors, and pH-sensitive quantum dots). The various configurations are reported along with the advantages and current limitations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.