The WNT16 locus is a major determinant of cortical bone thickness and nonvertebral fracture risk in humans. The disability, mortality and costs caused by osteoporosis-induced nonvertebral fractures are enormous. We demonstrate here that Wnt16-deficient mice develop spontaneous fractures as a result of low cortical thickness and high cortical porosity. In contrast, trabecular bone volume is not altered in these mice. Mechanistic studies revealed that WNT16 is osteoblast derived and inhibits human and mouse osteoclastogenesis both directly by acting on osteoclast progenitors and indirectly by increasing expression of osteoprotegerin (Opg) in osteoblasts. The signaling pathway activated by WNT16 in osteoclast progenitors is noncanonical, whereas the pathway activated in osteoblasts is both canonical and noncanonical. Conditional Wnt16 inactivation revealed that osteoblast-lineage cells are the principal source of WNT16, and its targeted deletion in osteoblasts increases fracture susceptibility. Thus, osteoblast-derived WNT16 is a previously unreported key regulator of osteoclastogenesis and fracture susceptibility. These findings open new avenues for the specific prevention or treatment of nonvertebral fractures, a substantial unmet medical need.
Because regulation of the differentiation to osteoblasts and adipocytes from a common progenitor in bone marrow stroma is poorly understood, we assessed effects of bone morphogenetic protein-2 (BMP-2) on a conditionally immortalized human marrow stromal cell line, hMS(2-6), which is capable of differentiation to either lineage. BMP-2 did not affect hMS(2-6) cell proliferation but enhanced osteoblast differentiation as assessed by a 1.
Background Severe acute respiratory syndrome coronavirus 2 infection is associated with hypercoagulability, which predisposes to venous thromboembolism (VTE). We analyzed platelet and neutrophil activation in patients with coronavirus disease 2019 (COVID-19) and their association with VTE. Methods Hospitalized patients with COVID-19 and age- and sex-matched healthy controls were studied. Platelet and leukocyte activation, neutrophil extracellular traps (NETs), and matrix metalloproteinase 9, a neutrophil-released enzyme, were measured. Four patients were restudied after recovery. The activating effect of plasma from patients with COVID-19 on control platelets and leukocytes and the inhibiting activity of common antithrombotic agents on it were studied. Results A total of 36 patients with COVID-19 and 31 healthy controls were studied; VTE developed in 8 of 36 patients with COVID-19 (22.2%). Platelets and neutrophils were activated in patients with COVID-19. NET, but not platelet activation, biomarkers correlated with disease severity and were associated with thrombosis. Plasmatic matrix metalloproteinase 9 was significantly increased in patients with COVID-19. Platelet and neutrophil activation markers, but less so NETs, normalized after recovery. In vitro, plasma from patients with COVID-19 triggered platelet and neutrophil activation and NET formation, the latter blocked by therapeutic-dose low-molecular-weight heparin, but not by aspirin or dypiridamole. Conclusions Platelet and neutrophil activation are key features of patients with COVID-19. NET biomarkers may help to predict clinical worsening and VTE and may guide low-molecular-weight heparin treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.