Summary Canine parvovirus (CPV) is an important infectious agent of domestic and wild carnivores, responsible for severe and often fatal haemorrhagic gastroenteritis and leukopenia. This paper reports the genomic characterization of a CPV strain collected from a dog recently imported to Italy from Thailand. The virus was detected in all tissue samples collected. The whole genome encompassing the two open reading frames encoding for non‐structural (NS1/NS2) and structural (VP1/VP2) proteins was amplified and sequenced. On the basis of genetic analysis of the VP2 gene, the isolate was characterized as CPV‐2c, but it presented genetic signatures typical of Asian strains. Sequence analysis revealed the presence of amino acid changes never observed in European CPV‐2c strains (NS1: Ile60Val, Tyr544Phe, Glu545Val, Leu630Pro; VP2: Ala5Gly, Phe267Tyr, Tyr324Ile, Gln370Arg). By phylogenetic analysis of full‐length VP2 gene, the analysed strain clustered together with Asian viruses. Therefore, a possible introduction of the virus from Asia through the imported dog was suggested, thus confirming the important role of movement of dogs in the global spread of viruses. In addition, full‐length genome analysis could help better trace the spread of canine viruses through different continents.
Canine parvovirus type 2 (CPV‐2) emerged as dog pathogen in the late 1970s, causing severe and often fatal epizootics of gastroenteritis in the canine population worldwide. Although to date CPV‐2 is circulating in all continents, most of the current studies have analysed the amino acid changes accounted in the VP2 gene sequence, with limited information on virus introductions from other countries. The aim of this study was to analyse the genetic features of CPV‐2c strains currently spreading in Italy. Swabs and tissue samples were collected from dogs suspected of CPV infection. The nearly complete genome sequence from the CPV‐positive samples was obtained. The co‐circulation of two different but related CPV‐2c strains, with amino acid changes characteristic of CPV strains of Asian origin (NS1: 60V, 544F, 545F, 630P – NS2: 60V, 151N, 152V ‐ VP2: 5A/G, 267Y, 297A, 324I, 370R), were observed. The phylogenetic analyses inferred from the NS1 and VP2 gene sequences confirmed the relationship with Asian CPV‐2c strains. This study reports the spread of novel CPV‐2c mutants in Italy and supports further studies to evaluate the coexistence of genetically divergent CPV strains in the same geographical environment.
In Europe, foodborne transmission has been clearly associated to sporadic cases and small clusters of hepatitis E in humans linked to the consumption of contaminated pig liver sausages, raw venison, or undercooked wild boar meat. In Europe, zoonotic HEV-genotype 3 strains are widespread in pig farms but little information is available on the prevalence of HEV positive pigs at slaughterhouse. In the present study, the prevalence of HEV-RNA positive pigs was assessed on 585 animals from 4 abattoirs located across Italy. Twenty-one pigs (3.6%) tested positive for HEV in either feces or liver by real-time RT-PCR. In these 21 pigs, eight diaphragm muscles resulted positive for HEV-RNA. Among animals collected in one abattoir, 4 out of 91 plasma tested positive for HEV-RNA. ELISA tests for the detection of total antibodies against HEV showed a high seroprevalence (76.8%), confirming the frequent exposure of pigs to the virus. The phylogenetic analyses conducted on sequences of both ORF1 and ORF2 fragments, shows the circulation of HEV-3c and of a novel unclassified subtype. This study provides information on HEV occurrence in pigs at the slaughterhouse, confirming that muscles are rarely contaminated by HEV-RNA compared to liver, which is the most frequently positive for HEV.
Canine parvovirus (CPV) is the etiological agent of a severe viral disease of dogs. After its emergence in late 1970s, the CPV original type (CPV-2) was rapidly and totally replaced by three antigenic variants named CPV-2a, CPV-2b and CPV-2c. CPV has an evolutionary rate nearest to those of RNA viruses, with consequences on disease diagnosis and epidemiology. This paper reports the molecular characterization of eight CPV-2a strains collected from dogs in Italy in 2016-2017. Genetic analysis was conducted on a CPV genomic region encompassing both open reading frames (ORFs) encoding for nonstructural (NS1-NS2) and structural proteins (VP1-VP2). Sequence analysis indicates new and unreported sequence changes, mainly affecting the VP2 gene, which included the mutation Tyr324Leu. This study represents the first evidence of a new CPV-2a mutant (VP2 324Leu) and illustrates the importance of a continuous molecular survey in order to obtain more information on effective spread of new CPV mutants.
Objectives: Enteric viruses are responsible for foodborne and waterborne infections affecting a large number of people. Data on food and water viral contamination in the south of Italy (Sicily) are scarce and fragmentary. The aim of this study was to evaluate the presence of viral contamination in food, water samples, and surface swabs collected in Sicily Methods: The survey was conducted on 108 shellfish, 23 water samples (seawater, pipe water, and torrent water), 52 vegetables, one peach and 17 berries, 11 gastronomic preparations containing fish products and/or raw vegetables, and 28 surface swabs. Hepatitis A virus (HAV), genogroup GI, GII, and GIV norovirus (NoV), enterovirus (EV), rotavirus (RoV), hepatitis E virus (HEV), adenovirus (AdV), and bocavirus (BoV) were detected by nested (RT) PCR, real-time PCR, and sequence analysis. Results: The most frequently detected viruses in shellfish were HAV (13%), NoV (18.5%), and EV (7.4%). Bocavirus was found in 3.7%, HEV in 0.9%, and AdV in 1.9% of the molluscs. Of the 23 water samples, 21.7% were positive for GII NoV and 4.3% for RoV and HEV genotype 3. Of the 70 vegetable samples, 2.9% were positive for NoV GI (GI.5 and GI.6), 2.9% for EV, and 1.4% for HEV. In the gastronomic preparations, only one EV (9%) was detected. No enteric viruses were detected in the berries, fruit, or swabs analyzed. Conclusions: Molecular surveillance of water and food samples clearly demonstrated that human pathogenic viruses are widely found in aquatic environments and on vegetables, and confirmed the role of vegetables and bivalve molluscs as the main reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.