Objectives The underlying structural brain correlates of neuropsychiatric involvement in systemic lupus erythematosus (NPSLE) remain unclear, thus hindering correct diagnosis. We compared brain tissue volumes between a clinically well-defined cohort of patients with NPSLE and SLE patients with neuropsychiatric syndromes not attributed to SLE (non-NPSLE). Within the NPSLE patients, we also examined differences between patients with two distinct disease phenotypes: ischemic and inflammatory. Methods In this prospective (May 2007 to April 2015) cohort study, we included 38 NPSLE patients (26 inflammatory and 12 ischemic) and 117 non-NPSLE patients. All patients underwent a 3-T brain MRI scan that was used to automatically determine white matter, grey matter, white matter hyperintensities (WMH) and total brain volumes. Group differences in brain tissue volumes were studied with linear regression analyses corrected for age, gender, and total intracranial volume and expressed as B values and 95% confidence intervals. Results NPSLE patients showed higher WMH volume compared to non-NPSLE patients (p = 0.004). NPSLE inflammatory patients showed lower total brain (p = 0.014) and white matter volumes (p = 0.020), and higher WMH volume (p = 0.002) compared to non-NPSLE patients. Additionally, NPSLE inflammatory patients showed lower white matter (p = 0.020) and total brain volumes (p = 0.038) compared to NPSLE ischemic patients. Conclusion We showed that different phenotypes of NPSLE were related to distinct patterns of underlying structural brain MRI changes. Especially the inflammatory phenotype of NPSLE was associated with the most pronounced brain volume changes, which might facilitate the diagnostic process in SLE patients with neuropsychiatric symptoms. Key Points • Neuropsychiatric systemic lupus erythematosus (NPSLE) patients showed a higher WMH volume compared to SLE patients with neuropsychiatric syndromes not attributed to SLE (non-NPSLE). • NPSLE patients with inflammatory phenotype showed a lower total brain and white matter volume, and a higher volume of white matter hyperintensities, compared to non-NPSLE patients. • NPSLE patients with inflammatory phenotype showed lower white matter and total brain volumes compared to NPSLE patients with ischemic phenotype.
ObjectiveTo compare cognitive function between patients with different phenotypes of neuropsychiatric systemic lupus erythematosus (NPSLE) and assess its association with brain and white matter hyperintensity (WMH) volumes.MethodsPatients attending the Leiden University Medical Centre NPSLE clinic between 2007 and 2015 without large brain infarcts were included (n=151; 42±13 years, 91% women). In a multidisciplinary consensus meeting, neuropsychiatric symptoms were attributed to systemic lupus erythematosus (SLE) (NPSLE, inflammatory (n=24) or ischaemic (n=12)) or to minor/non-NPSLE (n=115). Multiple regression analyses were performed to compare cognitive function between NPSLE phenotypes and to assess associations between brain and WMH volumes and cognitive function cross-sectionally.ResultsGlobal cognitive function was impaired in 5%, learning and memory (LM) in 46%, executive function and complex attention (EFCA) in 39% and psychomotor speed (PS) in 46% of all patients. Patients with inflammatory NPSLE showed the most cognitive impairment in all domains (p≤0.05).Higher WMH volume associated with lower PS in the total group (B: −0.14 (95% CI −0.32 to −0.02)); especially in inflammatory NPSLE (B: −0.36 (95% CI −0.60 to −0.12). In the total group, lower total brain volume and grey matter volume associated with lower cognitive functioning in all domains (all: 0.00/0.01 (0.00;0.01)) and lower white matter volume associated with lower LM, EFCA and PS (all: 0.00/0.01 (0.00;0.01)).ConclusionWe demonstrated that an association between brain and WMH volumes and cognitive function is present in patients with SLE, but differs between (NP)SLE phenotypes. WMHs associated with PS especially in inflammatory NPSLE, which suggests a different, potentially more severe underlying pathophysiological mechanism of cognitive impairment in this phenotype.
Objectives To evaluate longitudinal variations in diffusion tensor imaging (DTI) metrics of different white matter (WM) tracts of newly diagnosed SLE patients, and to assess whether DTI changes relate to changes in clinical characteristics over time. Methods A total of 17 newly diagnosed SLE patients (19–55 years) were assessed within 24 months from diagnosis with brain MRI (1.5 T Philips Achieva) at baseline, and after at least 12 months. Fractional anisotropy, mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity values were calculated in several normal-appearing WM tracts. Longitudinal variations in DTI metrics were analysed by repeated measures analysis of variance. DTI changes were separately assessed for 21 WM tracts. Associations between longitudinal alterations of DTI metrics and clinical variables (SLEDAI-2K, complement levels, glucocorticoid dosage) were evaluated using adjusted Spearman correlation analysis. Results Mean MD and RD values from the normal-appearing WM significantly increased over time (P = 0.019 and P = 0.021, respectively). A significant increase in RD (P = 0.005) and MD (P = 0.012) was found in the left posterior limb of the internal capsule; RD significantly increased in the left retro-lenticular part of the internal capsule (P = 0.013), and fractional anisotropy significantly decreased in the left corticospinal tract (P = 0.029). No significant correlation was found between the longitudinal change in DTI metrics and the change in clinical measures. Conclusion Increase in diffusivity, reflecting a compromised WM tissue microstructure, starts in initial phases of the SLE disease course, even in the absence of overt neuropsychiatric (NP) symptoms. These results indicate the importance of monitoring NP involvement in SLE, even shortly after diagnosis.
Introduction/PurposeSystemic lupus erythematosus (SLE) is a chronic auto-immune disease with a broad spectrum of clinical presentations, including heterogeneous neuropsychiatric (NP) syndromes. Structural brain abnormalities are commonly found in SLE and NPSLE, but their role in diagnosis is limited, and their usefulness in distinguishing between NPSLE patients and patients in which the NP symptoms are not primarily attributed to SLE (non-NPSLE) is non-existent. Self-supervised contrastive learning algorithms proved to be useful in classification tasks in rare diseases with limited number of datasets. Our aim was to apply self-supervised contrastive learning on T1-weighted images acquired from a well-defined cohort of SLE patients, aiming to distinguish between NPSLE and non-NPSLE patients.Subjects and MethodsWe used 3T MRI T1-weighted images of 163 patients. The training set comprised 68 non-NPSLE and 34 NPSLE patients. We applied random geometric transformations between iterations to augment our data sets. The ML pipeline consisted of convolutional base encoder and linear projector. To test the classification task, the projector was removed and one linear layer was measured. Validation of the method consisted of 6 repeated random sub-samplings, each using a random selection of a small group of patients of both subtypes.ResultsIn the 6 trials, between 79% and 83% of the patients were correctly classified as NPSLE or non-NPSLE. For a qualitative evaluation of spatial distribution of the common features found in both groups, Gradient-weighted Class Activation Maps (Grad-CAM) were examined. Thresholded Grad-CAM maps show areas of common features identified for the NPSLE cohort, while no such communality was found for the non-NPSLE group.Discussion/ConclusionThe self-supervised contrastive learning model was effective in capturing common brain MRI features from a limited but well-defined cohort of SLE patients with NP symptoms. The interpretation of the Grad-CAM results is not straightforward, but indicates involvement of the lateral and third ventricles, periventricular white matter and basal cisterns. We believe that the common features found in the NPSLE population in this study indicate a combination of tissue loss, local atrophy and to some extent that of periventricular white matter lesions, which are commonly found in NPSLE patients and appear hypointense on T1-weighted images.
Introduction/PurposeSystemic lupus erythematosus (SLE) is a chronic auto-immune disease with a broad spectrum of clinical presentations, including heterogeneous and uncommon neuropsychiatric (NP) syndromes. Accurate diagnosis of neuropsychiatric SLE (NPSLE) is challenging due to lack of clinically useful biomarkers. Despite structural brain abnormalities on MRI in NPSLE being a common finding, a robust link between structural abnormalities and NPSLE has not been established, thus their contribution to the distinction between NPSLE patients and patients in which the NP symptoms are not primarily attributed to SLE is limited. Self-supervised contrastive learning algorithms do not require labels, and have been shown to be useful in classification tasks in rare diseases with limited number of datasets. The aim of our study was to apply self-supervised contrastive learning on T1-weighted images acquired from a well-defined cohort of SLE patients to distinguish between SLE patients with NP symptoms due to the disease (NPSLE) or and SLE patients with similar symptoms due to other causes (non-NPSLE).Subjects and Methods163 patients were included. We used 3T MRI T1-weighted images registered to the MNI152 template. The training set comprised 68 non-NPSLE and 34 NPSLE patients. During the training procedure, we applied random geometric transformations (cropping, left-right flipping and rotations) between iterations to enrich our data sets. Our ML pipeline consisted of convolutional base encoder and linear projector. To test the classification task, the projector was removed and one linear layer was measured. We trained the encoder and projector with the Normalized Temperature-scaled Cross Entropy Loss (NT-xent) loss function. We performed a Monte Carlo validation that consisted of 6 repeated random sub-samplings each using a random selection of a small group of samples from each group.ResultsIn the 6 trials described above, between 79% and 83% of the patients were correctly classified as NPSLE or non-NPSLE. For a qualitative evaluation of spatial distribution of the common features found in the NPSLE population, Gradient-weighted Class Activation Maps (Grad-CAM) were examined voxel-wise. Thresholded Grad-CAM maps show areas of common features identified for the NPSLE cohort, with no such communality found for the non-NPSLE group.Discussion/conclusionThe self-supervised contrastive learning model was effective in capturing diagnostic brain MRI features from a limited but well-defined cohort of SLE patients with NP symptoms. The interpretation of the Grad-CAM results is not straightforward, but points to involvement of the lateral and third ventricles, periventricular white matter and basal cisterns. We believe that the common features found in the NPSLE population in this study indicate a combination of tissue loss, local atrophy and to some extent that of periventricular white matter lesions, which are commonly found in NPSLE patients and appear hypointense on T1-weighted images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.