Background Increased incidence of central precocious puberty (CPP) after coronavirus infectious disease-19 lockdown has been reported. Our study aims in investigating changes in CPP rates and in sleep patterns in CPP and healthy controls. Methods CPP were retrospectively evaluated from April 2020 to April 2021. Parents of girls diagnosed with CPP during lockdown and of matched healthy controls filled out a questionnaire about sleep disturbances (SDSC questionnaire) and sleep schedules. Results Thirty-five CPP and 37 controls completed the survey. Incidence of new CPP cases significantly increased in 2020–2021 compared to 2017–2020 (5:100 vs 2:100, p = 0.02). Sleep disturbance rates did not differ between CPP and healthy controls before lockdown. During lockdown, CPP reported higher rates of sleep disturbs for total score (p = 0.005), excessive somnolence (p = 0.049), sleep breathing disorders (p = 0.049), and sleep–wake transition disorders (p = 0.005). Moreover, CPP group more frequently shifted toward later bedtime (p = 0.03) during lockdown compared to controls. Hours of sleep and smartphone exposure around bedtime did not differ between groups. Conclusions Our study confirms the observation of increased incidence of CPP after lockdown measures. Additionally, CPP showed higher rates of sleep disturbances and later bedtime compared to controls. The causality link between sleep disturbances and CPP should be further investigated to gain knowledge in this association.
The rapid global spread of coronavirus disease 2019 (COVID-19) infection has become a major health issue with higher morbidity and mortality rates. Besides respiratory symptoms, a growing body of evidence indicates a variety of gastrointestinal manifestations including liver involvement. In this regard, several data supported an association between COVID-19 infection and liver injury in adults, while in children there is compelling but currently limited evidence. In particular, patients with COVID-19 have shown a higher risk of liver injury (mainly expressed as increased transaminase levels or hepatic steatosis). Conversely, a greater risk of more severe forms of COVID-19 infection has been observed in subjects with pre-existing chronic liver diseases. The dramatic interplay between COVID-19 and liver damage has been related to the inflammatory pathways chronically active in patients with nonalcoholic fatty liver disease and acutely in those affected by COVID-19, but other different pathogenic mechanisms have also been supposed. Of note, patients with previous metabolic comorbidities also had a higher risk of severe COVID-19 infection. This emphasizes the pathogenic interrelation of the inflammatory pathways with a dysregulated metabolic milieu in COVID-19 patients. Taking into account the prognostic role of fatty liver in COVID-19 patients and its intrinsic relationship with metabolic abnormalities even in childhood, a strict monitoring of this condition is recommended. We aimed to summarize the most recent evidence regarding the potential interplay between pediatric fatty liver and COVID-19.
In 2020, an international group of experts proposed to replace the term of nonalcoholic fatty liver disease with metabolic-associated fatty liver disease (MAFLD). This recent proposal reflects the close association of fatty liver with metabolic derangements, as demonstrated by previous robust data. Several factors [including genetics, inflammation, metabolic abnormalities, insulin resistance (IR), obesity, prenatal determinants, and gut–liver axis] have been found to be involved in MAFLD pathophysiology, but this tangled puzzle remains to be clearly understood. In particular, IR has been recognized as a key player in metabolic impairments development in children with fatty liver. On this ground, MAFLD definition focuses on the pathophysiological basis of the disease, by emphasizing the crucial role of metabolic impairments in this condition. Although primarily developed for adults, MAFLD diagnostic criteria have been recently updated with an age-appropriate definition for sex and age percentiles, because of the increasing attention to cardiometabolic risk in childhood. To date, accumulating evidence is available on the feasibility of MAFLD definition in clinical practice, but some data are still conflicting in highly selected populations. Considering the growing prevalence worldwide of fatty liver and its close relationship with metabolic dysfunction both in children and adults with subsequent increased cardiovascular risk, early strategies for MAFLD identification, treatment and prevention are needed. Novel therapeutic insights for MAFLD based on promising innovative biological techniques are also emerging. We aimed to summarize the most recent evidence in this intriguing research area both in children and adults.
Diabetic nephropathy (DN) represents the most common microvascular complication in patients with diabetes. This progressive kidney disease has been recognized as the major cause of end-stage renal disease with higher morbidity and mortality. However, its tangled pathophysiology is still not fully known. Due to the serious health burden of DN, novel potential biomarkers have been proposed to improve early identification of the disease. In this complex landscape, several lines of evidence supported a critical role of microRNAs (miRNAs) in regulating posttranscriptional levels of protein-coding genes involved in DN pathophysiology. Indeed, intriguing data showed that deregulation of certain miRNAs (e.g., miRNAs 21, -25, -92, -210, -126, -216, and -377) were pathogenically linked to the onset and the progression of DN, suggesting not only a role as early biomarkers but also as potential therapeutic targets. To date, these regulatory biomolecules represent the most promising diagnostic and therapeutic options for DN in adult patients, while similar pediatric evidence is still limited. More, findings from these elegant studies, although promising, need to be deeper investigated in larger validation studies. In an attempt to provide a comprehensive pediatric overview in the field, we aimed to summarize the most recent evidence on the emerging role of miRNAs in pediatric DN pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.