Molecular tools have revolutionized the exploration of biodiversity, especially in organisms for which traditional taxonomy is difficult, such as for microscopic animals (meiofauna). Environmental (eDNA) metabarcode surveys of DNA extracted from sediment samples are increasingly popular for surveying biodiversity. Most eDNA surveys use the nuclear gene-encoding smallsubunit rDNA gene (18S) as a marker; however, different markers and metrics used for delimiting species have not yet been evaluated against each other or against morphologically defined species (morphospecies). We assessed more than 12,000 meiofaunal sequences of 18S and of the main alternatively used marker [Cytochrome c oxidase subunit I (COI) mtDNA] belonging to 55 datasets covering three taxonomic ranks. Our results show that 18S reduced diversity estimates by a factor of 0.4 relative to morphospecies, whereas COI increased diversity estimates by a factor of 7.6. Moreover, estimates of species richness using COI were robust among three of four commonly used delimitation metrics, whereas estimates using 18S varied widely with the different metrics. We show that meiofaunal diversity has been greatly underestimated by 18S eDNA surveys and that the use of COI provides a better estimate of diversity. The suitability of COI is supported by cross-mating experiments in the literature and evolutionary analyses of discreteness in patterns of genetic variation. Furthermore its splitting of morphospecies is expected from documented levels of cryptic taxa in exemplar meiofauna. We recommend against using 18S as a marker for biodiversity surveys and suggest that use of COI for eDNA surveys could provide more accurate estimates of species richness in the future.DNA barcodes | species delimitation | microinvertebrates | environmental DNA
Understanding patterns and processes in biological diversity is a critical task given current and rapid environmental change. Such knowledge is even more essential when the taxa under consideration are important ecological and evolutionary models. One of these cases is the monogonont rotifer cryptic species complex Brachionus plicatilis, which is by far the most extensively studied group of rotifers, is widely used in aquaculture, and is known to host a large amount of unresolved diversity. Here we collate a dataset of previously available and newly generated sequences of COI and ITS1 for 1273 isolates of the B. plicatilis complex and apply three approaches in DNA taxonomy (i.e. ABGD, PTP, and GMYC) to identify and provide support for the existence of 15 species within the complex. We used these results to explore phylogenetic signal in morphometric and ecological traits, and to understand correlation among the traits using phylogenetic comparative models. Our results support niche conservatism for some traits (e.g. body length) and phylogenetic plasticity for others (e.g. genome size).
Background Biogeographical and macroecological principles are derived from patterns of distribution in large organisms, whereas microscopic ones have often been considered uninteresting, because of their supposed wide distribution. Here, after reporting the results of an intensive faunistic survey of marine microscopic animals (meiofauna) in Northern Sardinia, we test for the effect of body size, dispersal ability, and habitat features on the patterns of distribution of several groups. Methodology/Principal Findings As a dataset we use the results of a workshop held at La Maddalena (Sardinia, Italy) in September 2010, aimed at studying selected taxa of soft-bodied meiofauna (Acoela, Annelida, Gastrotricha, Nemertodermatida, Platyhelminthes and Rotifera), in conjunction with data on the same taxa obtained during a previous workshop hosted at Tjärnö (Western Sweden) in September 2007. Using linear mixed effects models and model averaging while accounting for sampling bias and potential pseudoreplication, we found evidence that: (1) meiofaunal groups with more restricted distribution are the ones with low dispersal potential; (2) meiofaunal groups with higher probability of finding new species for science are the ones with low dispersal potential; (3) the proportion of the global species pool of each meiofaunal group present in each area at the regional scale is negatively related to body size, and positively related to their occurrence in the endobenthic habitat. Conclusion/Significance Our macroecological analysis of meiofauna, in the framework of the ubiquity hypothesis for microscopic organisms, indicates that not only body size but mostly dispersal ability and also occurrence in the endobenthic habitat are important correlates of diversity for these understudied animals, with different importance at different spatial scales. Furthermore, since the Western Mediterranean is one of the best-studied areas in the world, the large number of undescribed species (37%) highlights that the census of marine meiofauna is still very far from being complete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.