The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.
We used noninvasive methods to obtain genetic and demographic data on the wolf packs (Canis lupus), which are now recolonizing the Alps, a century after their eradication. DNA samples, extracted from presumed wolf scats collected in the western Italian Alps (Piemonte), were genotyped to determine species and sex by sequencing parts of the mitochondrial DNA (mtDNA) control-region and ZFX/ZFY genes. Individual genotypes were identified by multilocus microsatellite analyses using a multiple tubes polymerase chain reaction (PCR). The performance of the laboratory protocols was affected by the age of samples. The quality of excremental DNA extracts was higher in samples freshly collected on snow in winter than in samples that were older or collected during summer. Preliminary mtDNA screening of all samples allowed species identification and was a good predictor of further PCR performances. Wolf, and not prey, DNA targets were preferentially amplified. Allelic dropout occurred more frequently than false alleles, but the probability of false homozygote determinations was always < 0.001. A panel of six to nine microsatellites would allow identification of individual wolf genotypes, also whether related, with a probability of identity of < 0.015. Genealogical relationships among individuals could be determined reliably if the number of candidate parents was 6-8, and most of them had been sampled and correctly genotyped. Genetic data indicate that colonizing Alpine wolves originate exclusively from the Italian source population and retain a high proportion of its genetic diversity. Spatial and temporal locations of individual genotypes, and kinship analyses, suggest that two distinct packs of closely related wolves, plus some unrelated individuals, ranged in the study areas. This is in agreement with field observations.
Wolves in Italy strongly declined in the past and were confined south of the Alps since the turn of the last century, reduced in the 1970s to approximately 100 individuals surviving in two fragmented subpopulations in the central-southern Apennines. The Italian wolves are presently expanding in the Apennines, and started to recolonize the western Alps in Italy, France and Switzerland about 16 years ago. In this study, we used a population genetic approach to elucidate some aspects of the wolf recolonization process. DNA extracted from 3068 tissue and scat samples collected in the Apennines (the source populations) and in the Alps (the colony), were genotyped at 12 microsatellite loci aiming to assess (i) the strength of the bottleneck and founder effects during the onset of colonization; (ii) the rates of gene flow between source and colony; and (iii) the minimum number of colonizers that are needed to explain the genetic variability observed in the colony. We identified a total of 435 distinct wolf genotypes, which showed that wolves in the Alps: (i) have significantly lower genetic diversity (heterozygosity, allelic richness, number of private alleles) than wolves in the Apennines; (ii) are genetically distinct using pairwise F(ST) values, population assignment test and Bayesian clustering; (iii) are not in genetic equilibrium (significant bottleneck test). Spatial autocorrelations are significant among samples separated up to c. 230 km, roughly correspondent to the apparent gap in permanent wolf presence between the Alps and north Apennines. The estimated number of first-generation migrants indicates that migration has been unidirectional and male-biased, from the Apennines to the Alps, and that wolves in southern Italy did not contribute to the Alpine population. These results suggest that: (i) the Alps were colonized by a few long-range migrating wolves originating in the north Apennine subpopulation; (ii) during the colonization process there has been a moderate bottleneck; and (iii) gene flow between sources and colonies was moderate (corresponding to 1.25-2.50 wolves per generation), despite high potential for dispersal. Bottleneck simulations showed that a total of c. 8-16 effective founders are needed to explain the genetic diversity observed in the Alps. Levels of genetic diversity in the expanding Alpine wolf population, and the permanence of genetic structuring, will depend on the future rates of gene flow among distinct wolf subpopulation fragments.
Summary 1.Reliable estimates of population parameters are often necessary for conservation management but these are hard to obtain for elusive, rare and wide-ranging species such as wolves Canis lupus. This species has naturally recolonized parts of its former habitat in Western Europe; however, an accurate and cost-effective method to assess population trend and survival has not been implemented yet. 2.We used open-model capture-recapture (CR) sampling with non-invasive individual identifications derived from faecal genotyping to estimate survival and trend in abundance for wolves in the Western Alps between 1999 and 2006. Our sampling strategy reduced individual heterogeneity in recaptures, thus minimizing bias and increasing the precision of the estimates. 3. Young wolves had lower apparent annual survival rates (0AE24 ± 0AE06) than adult wolves (0AE82 ± 0AE04); survival rates were lower in the summer than in the winter for both young and adults. The wolf population in the study area increased from 21 ± 9AE6 wolves in 1999 to 47 ± 11AE2 wolves in late winter 2005; the population growth rate (k = 1AE04 ± 0AE27) was lower than that recorded for other recolonizing wolf populations. 4. We found a positive trend in wolf abundance, regardless of the method used. However, the abundance estimate based on snow-tracking was on average 36AE2% (SD = 13AE6%) lower than that from CR modelling, because young dispersing wolves are likely to have lower sign detection rates in snow-track surveys, a problem adequately addressed by CR sampling. 5. Synthesis and applications. We successfully implemented a new method to assess large carnivore population trend and survival at large spatial scales. These are the first such estimates for wolves in Italy and in the Alps and have important management implications. Our approach can be widely applied to broader spatial and temporal scales for other elusive and wide-ranging species in Europe and elsewhere.
Summary Wolves Canis lupus recently recolonized the Western Alps through dispersal from the ItalianApennines, representing one of several worldwide examples of large carnivores increasing in highly human-dominated landscapes. Understanding and predicting expansion of this population is important for conservation because of its direct impact on livestock and its high level of societal opposition. 2. We built a predictive, spatially explicit, individual-based model to examine wolf population expansion in this fragmented landscape, and livestock depredation risk. We developed the model based on known demographic processes, social structure, behaviour and habitat selection of wolves collected during a 10-year intensive field study of this wolf population. 3. During model validation, our model accurately described the recolonization process within the Italian Alps, correctly predicting wolf pack locations, pack numbers and wolf population size, between 1999 and 2008. 4. We then projected packs and dispersers over the entire Italian Alps for 2013, 2018 and 2023. We predicted 25 packs (95% CI: 19-32) in 2013, 36 (23-47) in 2018 and 49 (29-68) in 2023. The SouthWestern Alps were the main source for wolves repopulating the Alps from 1999 to 2008. The source area for further successful dispersers will probably shift to the North-Western Alps after 2008, but the large lakes in the Central Alps will probably act as a spatial barrier slowing the wolf expansion. 5. Using the pack presence forecasts, we estimated spatially explicit wolf depredation risk on livestock, allowing tailored local and regional management actions. 6. Synthesis and applications. Our predictive model is novel because we follow the spatio-temporal dynamics of packs, not just population size, which have substantially different requirements and impacts on wolf-human conflicts than wandering dispersers. Our approach enables prioritization of management efforts, including minimizing livestock depredations, identifying important corridors and barriers, and locating future source populations for successful wolf recolonization of the Alps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.