In the present work the thermal conductivity of twenty-nine samples of clay bricks was measured and the correlations of the thermal performance with the compositional, physical and microstructural features of products were investigated. The results obtained directed our attention toward a better understanding of the role played by some parameters (i.e. mineralogical components and pore size distribution), other than bulk density, in improving or depressing the insulating properties of bricks. Among them, the unfavourable role of quartz, Ca-rich silicates and amorphous phase came out, while the role of pore size and specific surface should be more accurately evaluated in the structural design of materials.
Zirconia–alumina composites couple the high toughness of zirconia with the peculiar properties of alumina, i.e., hardness, wear, and chemical resistance, so they are considered promising materials for orthopedic and dental implants. The design of high performance zirconia composites needs to consider different aspects, such as the type and amount of stabilizer and the sintering process, that affect the mechanics of toughening and, hence, the mechanical properties. In this study, several stabilizers (Y2O3, CuO, Ta2O5, and CeO2) were tested together with different sintering processes to analyze the in situ toughening mechanism induced by the tetragonal–monoclinic (t–m) transformation of zirconia. One of the most important outcomes is the comprehension of the opposite effect played by the grain size and the tetragonality of the zirconia lattice on mechanical properties, such as fracture toughness and bending strength. These results allow for the design of materials with customized properties and open new perspectives for the development of high-performance zirconia composites for orthopedic implants with high hydrothermal resistance. Moreover, a near-net shape forming process based on the additive manufacturing technology of digital light processing (DLP) was also studied to produce ceramic dental implants with a new type of resin–ceramic powder mixture. This represents a new frontier in the development of zirconia composites thanks to the possibility to obtain a customized component with limited consumption of material and reduced machining costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.