Interactions between bacteria and fungi cover a wide range of incentives, mechanisms and outcomes. The genus Collimonas consists of soil bacteria that are known for their antifungal activity and ability to grow at the expense of living fungi. In non-contact confrontation assays with the fungus Aspergillus niger, Collimonas fungivorans showed accumulation of biomass concomitant with inhibition of hyphal spread. Through microarray analysis of bacterial and fungal mRNA from the confrontation arena, we gained new insights into the mechanisms underlying the fungistatic effect and mycophagous phenotype of collimonads. Collimonas responded to the fungus by activating genes for the utilization of fungal-derived compounds and for production of a putative antifungal compound. In A. niger, differentially expressed genes included those involved in lipid and cell wall metabolism and cell defense, which correlated well with the hyphal deformations that were observed microscopically. Transcriptional profiles revealed distress in both partners: downregulation of ribosomal proteins and upregulation of mobile genetic elements in the bacteria and expression of endoplasmic reticulum stress and conidia-related genes in the fungus. Both partners experienced nitrogen shortage in each other's presence. Overall, our results indicate that the Collimonas/ Aspergillus interaction is a complex interplay between trophism, antibiosis and competition for nutrients.
Plasmid pTer331 from the bacterium Collimonas fungivorans Ter331 is a new member of the pIPO2/pSB102 family of environmental plasmids. The 40 457-bp sequence of pTer331 codes for 44 putative ORFs, most of which represent genes involved in replication, partitioning and transfer of the plasmid. We confirmed that pTer331 is stably maintained in its native host. Deletion analysis identified a mini-replicon capable of replicating autonomously in Escherichia coli and Pseudomonas putida. Furthermore, plasmid pTer331 was able to mobilize and retromobilize IncQ plasmid pSM1890 at typical rates of 10(-4) and 10(-8), respectively. Analysis of the 91% DNA sequence identity between pTer331 and pIPO2 revealed functional conservation of coding sequences, the deletion of DNA fragments flanked by short direct repeats (DR), and sequence preservation of long DRs. In addition, we experimentally established that pTer331 has no obvious contribution in several of the phenotypes that are characteristic of its host C. fungivorans Ter331, including the ability to efficiently colonize plant roots. Based on our findings, we hypothesize that cryptic plasmids such as pTer331 and pIPO2 might not confer an individual advantage to bacteria, but, due to their broad-host-range and ability to retromobilize, benefit bacterial populations by accelerating the intracommunal dissemination of the mobile gene pool.
Summary Collimonas is a genus of soil bacteria comprising three recognized species: C. fungivorans, C. pratensis and C. arenae. Collimonads share the ability to degrade chitin (chitinolysis), feed on living fungal hyphae (mycophagy), and dissolve minerals (weathering), but vary in their inhibition of fungi (fungistasis). To better understand this phenotypic variability, we analysed the genomic content of four strains representing three Collimonas species (Ter14, Ter6, Ter91 and Ter10) by hybridization to a microarray based on reference strain C. fungivorans Ter331. The analysis revealed genes unique to strain Ter331 (e.g. those on the extrachromosomal element pTer331) and genes present in some but not all of the tested strains. Among the latter were several candidates that may contribute to fungistasis, including genes for the production and secretion of antifungals. We hypothesize that differential possession of these genes underlies the specialization of Collimonas strains towards different fungal hosts. We identified a set of 136 genes that were common in all tested Collimonas strains, but absent from the genomes of three other members of the family Oxalobacteraceae. Predicted products of these ‘Collimonas core’ genes include lytic, secreted enzymes such as chitinases, peptidases, nucleases and phosphatases with a putative role in mycophagy and weathering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.