The initial stages of water adsorption on magnetite Fe O (111) surface and the atomic structure of the water/oxide interface remain controversial. Herein, we provide experimental results obtained by infrared reflection-absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD), corroborated by density functional theory (DFT) calculations showing that water readily dissociates on Fe sites to form two hydroxo species. These act as an anchor for water molecules to form a dimer complex which self-assembles into an ordered (2×2) structure. Water ad-layer ordering is rationalized in terms of a cooperative effect induced by a hydrogen-bonding network.
We present a mechanistic study on the interaction of water with a well-defined model Fe3O4(111) surface that was investigated by a combination of direct calorimetric measurements of adsorption energies, infrared vibrational spectroscopy, and calculations bases on density functional theory (DFT). We show that the adsorption energy of water (101 kJ mol(-1)) is considerably higher than all previously reported values obtained by indirect desorption-based methods. By employing (18)O-labeled water molecules and an Fe3 O4 substrate, we proved that the generally accepted simple model of water dissociation to form two individual OH groups per water molecule is not correct. DFT calculations suggest formation of a dimer, which consists of one water molecule dissociated into two OH groups and another non-dissociated water molecule creating a thermodynamically very stable dimer-like complex.
Although the (111) surface of FeO (magnetite) has been investigated for more than 20 years, substantial controversy remains in the literature regarding the surface termination proposed based on structural and adsorption studies. The present article provides density functional theory results that allow to rationalize experimental results of infrared reflection-absorption spectroscopy and temperature-programmed desorption studies on CO adsorption, thus leading to a unified picture in which the FeO(111) surface is terminated by a / monolayer of tetrahedrally coordinated Fe ions on top of a close-packed oxygen layer as previously determined by low energy electron diffraction. However, surface defects play a crucial role in adsorption properties and may dominate chemical reactions on FeO(111) when exposed to the ambient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.