Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.
Transparent conductive carbon nanotube (CNT) films were fabricated by dip-coating solutions of pristine CNTs dissolved in chlorosulfonic acid (CSA) and then removing the CSA. The film performance and morphology (including alignment) were controlled by the CNT length, solution concentration, coating speed, and level of doping. Using long CNTs (∼10 μm), uniform films were produced with excellent optoelectrical performance (∼100 Ω/sq sheet resistance at ∼90% transmittance in the visible), in the range of applied interest for touch screens and flexible electronics. This technique has potential for commercialization because it preserves the length and quality of the CNTs (leading to enhanced film performance) and operates at high CNT concentration and coating speed without using surfactants (decreasing production costs).
We study how intrinsic parameters of carbon nanotube (CNT) samples affect the properties of macroscopic CNT fibers with optimized structure. We measure CNT diameter, number of walls, aspect ratio, graphitic character, and purity (residual catalyst and non-CNT carbon) in samples from 19 suppliers; we process the highest quality CNT samples into aligned, densely packed fibers, by using an established wet-spinning solution process. We find that fiber properties are mainly controlled by CNT aspect ratio and that sample purity is important for effective spinning. Properties appear largely unaffected by CNT diameter, number of walls, and graphitic character (determined by Raman G/D ratio) as long as the fibers comprise thin few-walled CNTs with high G/D ratio (above ∼20). We show that both strength and conductivity can be improved simultaneously by assembling high aspect ratio CNTs, producing continuous CNT fibers with an average tensile strength of 2.4 GPa and a room temperature electrical conductivity of 8.5 MS/m, ∼2 times higher than the highest reported literature value (∼15% of copper's value), obtained without postspinning doping. This understanding of the relationship of intrinsic CNT parameters to macroscopic fiber properties is key to guiding CNT synthesis and continued improvement of fiber properties, paving the way for CNT fiber introduction in large-scale aerospace, consumer electronics, and textile applications.
Attempts at depositing uniform films of nanoparticles by drop-drying have been frustrated by the "coffee-stain" effect due to convective macroscopic flow into the contact line. Here, we show that uniform deposition of nanoparticles in aqueous suspensions can be attained easily by drying the droplet in an ethanol vapor atmosphere. This technique allows the particle-laden water droplets to spread on a variety of surfaces such as glass, silicon, mica, PDMS, and even Teflon. Visualization of droplet shape and internal flow shows initial droplet spreading and strong recirculating flow during spreading and shrinkage. The initial spreading is due to a diminishing contact angle from the absorption of ethanol from the vapor at the contact line. During the drying phase, the vapor is saturated in ethanol, leading to preferential evaporation of water at the contact line. This generates a surface tension gradient that drives a strong recirculating flow and homogenizes the nanoparticle concentration. We show that this method can be used for depositing catalyst nanoparticles for the growth of single-walled carbon nanotubes as well as to manufacture plasmonic films of well-spaced, unaggregated gold nanoparticles.
The diameter dependence of the collapse of single- and double-walled carbon nanotubes to two- and four-walled graphene nanoribbons with closed edges (CE(x)GNRs) has been experimentally determined and compared to theory. TEM and AFM were used to characterize nanotubes grown from preformed 4.0 nm diameter aluminum-iron oxide particles. Experimental data indicate that the energy equivalence point (the diameter at which the energy of a round and fully collapsed nanotube is the same) is 2.6 and 4.0 nm for single- and double-walled carbon nanotubes, respectively. Molecular dynamics simulations predict similar energy equivalence diameters with the use of ε = 54 meV/pair to calculate the carbon-carbon van der Waals interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.