The recent launch onto the market of five VEGFR inhibitors indicates the therapeutic value of these agents and the importance of the research in the field of angiogenesis inhibitors for future oncologic therapy. In this Perspective we briefly report the inhibitors that are in clinical use, while we dedicate two wider sections to the compounds that are in clinical trials and to the new derivatives appearing in the literature. We especially consider the medicinal chemistry aspect of the topic and report the structure-activity relationship studies and the binding mode of some inhibitors as well as the biological data of the compounds discovered in the past 5 years.
mTOR (mammalian target of rapamycin) is a serine-threonine kinase belonging to the PI3K/Akt/mTOR signalling pathway that is involved in several cell functions, including growth, proliferation, apoptosis and autophagy. mTOR hyperactivation has been detected in several human cancers, thus representing, together with its upstream effectors, an important target for cancer therapy. mTOR exists in two different complexes in cells, mTORC1 and mTORC2 which could both be targeted by potential anticancer agents. Rapamycin, the selective and allosteric inhibitor of mTOR, inhibits the enzyme in mTORC1, but not in mTORC2. In the last few years a number of mTOR ATP-competitive inhibitors has been reported acting on mTOR in both complexes and possessing a more complete anticancer activity in comparison with that of rapamycin and its derivatives. mTOR shares high sequence homology in the hinge-region with PI3K that is a lipid kinase upstream to mTOR in the same signaling pathway; for this reason some compounds originally developed as PI3K inhibitors later showed to also target mTOR. As indicated by preclinical and clinical studies, compounds acting on more than one target could result in a better biological response and in enhanced therapeutic potential and also dual PI3K/mTOR inhibitors result of great interest as potential antitumor agents. This review mainly reports the recently discovered mTOR ATP-competitive inhibitors in terms of medicinal chemistry, classified by their chemical structures, focusing on SAR and modelling studies that led to the discovery of very potent and selective agents, such as AZD-8055, OSI-027 and INK128, already entered clinical trials, or WYE-132, Torin1 and others in preclinical studies. Also some examples of dual PI3K/mTOR inhibitors, including PI-103, GNE477, WJD008 and GSK2126458 are reported together with their biological and clinical data.
Glioblastoma multiforme (GBM) is the most aggressive CNS tumor and is characterized by a very high frequency of clinical relapse after therapy and thus by a dismal prognosis, which strongly compromises patients survival. We have recently identified the small molecule SI113, as a potent and selective inhibitor of SGK1, a serine/threonine protein kinase, that modulates several oncogenic signaling cascades. The SI113-dependent SGK1 inhibition induces cell death, blocks proliferation and perturbs cell cycle progression by modulating SGK1-related substrates. SI113 is also able to strongly and consistently block, in vitro and in vivo, growth and survival of human hepatocellular-carcinomas, either used as a single agent or in combination with ionizing radiations.In the present paper we aim to study the effect of SI113 on human GBM cell lines with variable p53 expression. Cell viability, cell death, caspase activation and cell cycle progression were then analyzed by FACS and WB-based assays, after exposure to SI113, with or without oxidative stress and ionizing radiations. Moreover, autophagy and related reticulum stress response were evaluated.We show here, that i) SGK1 is over-expressed in highly malignant gliomas and that the treatment with SI113 leads to ii) significant increase in caspase-mediated apoptotic cell death in GBM cell lines but not in normal fibroblasts; iii)enhancement of the effects of ionizing radiations; iv) modulation of the response to oxidative reticulum stress; v) induction of cytotoxic autophagy.Evidence reported here underlines the therapeutic potential of SI113 in GBM, suggesting a new therapeutic strategy either alone or in combination with radiotherapy.
c-Src is a tyrosine kinase belonging to the Src-family kinases. It is overexpressed and/or hyperactivated in a variety of cancer cells, thus its inhibition has been predicted to have therapeutic effects in solid tumors. Recently, the pyrazolo[3,4-d]pyrimidine 3 was reported as a dual c-Src/Abl inhibitor. Herein we describe a multidisciplinary drug discovery approach for the optimization of the lead 3 against c-Src. Starting from the X-ray crystal structure of c-Src in complex with 3, Monte Carlo free energy perturbation calculations were applied to guide the design of c-Src inhibitors with improved activities. As a result, the introduction of a meta hydroxyl group on the C4 anilino ring was computed to be particularly favorable. The potency of the synthesized inhibitors was increased with respect to the starting lead 3. The best identified compounds were also found active in the inhibition of neuroblastoma cell proliferation. Furthermore, compound 29 also showed in vivo activity in xenograft model using SH-SY5Y cells.
Background/Aims:Published observations on serum and glucocorticoid regulated kinase 1 (Sgk1) knockout murine models and Sgk1-specific RNA silencing in the RKO human colon carcinoma cell line point to this kinase as a central player in colon carcinogenesis and in resistance to taxanes. Methods:By in vitro kinase activity inhibition assays, cell cycle and viability analysis in human cancer model systems, we describe the biologic effects of a recently identified kinase inhibitor, SI113, characterized by a substituted pyrazolo[3,4-d]pyrimidine scaffold, that shows specificity for Sgk1. Results: SI113 was able to inhibit in vitro cell growth in cancer cells derived from tumors with different origins. In RKO cells, this kinase inhibitor blocked insulin-dependent phosphorylation of the Sgk1 substrate Mdm2, the main regulator of p53 protein stability, and induced necrosis and apoptosis when used as a single agent. Finally, SI113 potentiated the effects of paclitaxel on cell viability. Conclusion:Since SI113 appears to be effective in inducing cell death in RKO cells, potentiating paclitaxel sensitivity, we believe that this new molecule could be efficiently employed, alone or in combination with paclitaxel, in colon cancer chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.