Alzheimer’s disease (AD), a primary cause of dementia in the aging population, is characterized by extracellular amyloid-beta peptides aggregation, intracellular deposits of hyperphosphorylated tau, neurodegeneration and glial activation in the brain. It is commonly thought that the lack of early diagnostic criteria is among the main causes of pharmacological therapy and clinical trials failure; therefore, the actual challenge is to define new biomarkers and non-invasive technologies to measure neuropathological changes in vivo at pre-symptomatic stages. Recent evidences obtained from human samples and mouse models indicate the possibility to detect protein aggregates and other pathological features in the retina, paving the road for non-invasive rapid detection of AD biomarkers. Here, we report the presence of amyloid beta plaques, tau tangles, neurodegeneration and detrimental astrocyte and microglia activation according to a disease associated microglia phenotype (DAM). Thus, we propose the human retina as a useful site for the detection of cellular and molecular changes associated with Alzheimer’s disease.
Neurotrauma injuries are notoriously difficult to deal with both clinically as well as experimentally, as the cellular and molecular events ensuing after injury complicate the neuroinflammatory processes. Spinal cord injuries are further complicated by the formation of scars at the injury sites, which can provide a physical barrier to repair. The lack of effective clinical therapy for spinal cord injury underscores the need for experimental approaches to generate effective therapies. To repair the injury, cell transplantation offers the potential to replace lost cells and create a permissive bridge to promote neural regeneration across the injury site. Olfactory ensheathing cells (OECs), which are the glia of the olfactory nerve, stand apart from other candidate cell types due to their innate natural abilities to manage nerve injury and promote repair and regeneration. This is evidenced by their physiological role in the daily repair and maintenance of the olfactory nerve. Here, we explain their properties in relation to their physiological role and their most relevant cellular attributes, including cellular interactions, phagocytosis, migration, axonal guidance and support, and modulation of neuroinflammation. We highlight some critical drawbacks in the current approaches and identify some ways to address them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.