BackgroundEstimating the long-term health impact of air pollution in a spatio-temporal ecological study requires representative concentrations of air pollutants to be constructed for each geographical unit and time period. Averaging concentrations in space and time is commonly carried out, but little is known about how robust the estimated health effects are to different aggregation functions. A second under researched question is what impact air pollution is likely to have in the future.MethodsWe conducted a study for England between 2007 and 2011, investigating the relationship between respiratory hospital admissions and different pollutants: nitrogen dioxide (NO2); ozone (O3); particulate matter, the latter including particles with an aerodynamic diameter less than 2.5 micrometers (PM2.5), and less than 10 micrometers (PM10); and sulphur dioxide (SO2). Bayesian Poisson regression models accounting for localised spatio-temporal autocorrelation were used to estimate the relative risks (RRs) of pollution on disease risk, and for each pollutant four representative concentrations were constructed using combinations of spatial and temporal averages and maximums. The estimated RRs were then used to make projections of the numbers of likely respiratory hospital admissions in the 2050s attributable to air pollution, based on emission projections from a number of Representative Concentration Pathways (RCP).ResultsNO2 exhibited the largest association with respiratory hospital admissions out of the pollutants considered, with estimated increased risks of between 0.9 and 1.6% for a one standard deviation increase in concentrations. In the future the projected numbers of respiratory hospital admissions attributable to NO2 in the 2050s are lower than present day rates under 3 Representative Concentration Pathways (RCPs): 2.6, 6.0, and 8.5, which is due to projected reductions in future NO2 emissions and concentrations.ConclusionsNO2 concentrations exhibit consistent substantial present-day health effects regardless of how a representative concentration is constructed in space and time. Thus as concentrations are predicted to remain above limits set by European Union Legislation until the 2030s in parts of urban England, it will remain a substantial health risk for some time.Electronic supplementary materialThe online version of this article (doi:10.1186/s12940-017-0237-1) contains supplementary material, which is available to authorized users.
HighlightsWe explored the sensitivity of the pollution-health effect to three factors.Estimation of NO2, choice of deprivation and choice of spatial autocorrelation model.Choice of these factors leads to a wide variation in pollution-health effects.BMA is utilised to estimate an overall effect while accounting for model uncertainty.Overall, a positive but borderline pollution-health effect was obtained.
It has been well documented that air pollution adversely affects health, and epidemiological pollution-health studies utilise pollution data from automatic monitors. However, these automatic monitors are small in number and hence spatially sparse, which does not allow an accurate representation of the spatial variation in pollution concentrations required for these epidemiological health studies. Nitrogen dioxide (NO2) diffusion tubes are also used to measure concentrations, and due to their lower cost compared to automatic monitors are much more prevalent. However, even combining both data sets still does not provide sufficient spatial coverage of NO2 for epidemiological studies, and modelled concentrations on a regular grid from atmospheric dispersion models are also available. This paper proposes the first modelling approach to using all three sources of NO2 data to make fine scale spatial predictions for use in epidemiological health studies. We propose a geostatistical fusion model that regresses combined NO2 concentrations from both automatic monitors and diffusion tubes against modelled NO2 concentrations from an atmospheric dispersion model in order to predict fine scale NO2 concentrations across our West Central Scotland study region. Our model exhibits a 47% improvement in fine scale spatial prediction of NO2 compared to using the automatic monitors alone, and we use it to predict NO2 concentrations across West Central Scotland in 2006.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.