Lipids play critical functions in cellular survival, proliferation, interaction and death, since they are involved in chemical-energy storage, cellular signaling, cell membranes, and cell–cell interactions. These cellular processes are strongly related to carcinogenesis pathways, particularly to transformation, progression, and metastasis, suggesting the bioactive lipids are mediators of a number of oncogenic processes. The current review gives a synopsis of a lipidomic approach in tumor characterization; we provide an overview on potential lipid biomarkers in the oncology field and on the principal lipidomic methodologies applied. The novel lipidomic biomarkers are reviewed in an effort to underline their role in diagnosis, in prognostic characterization and in prediction of therapeutic outcomes. A lipidomic investigation through mass spectrometry highlights new insights on molecular mechanisms underlying cancer disease. This new understanding will promote clinical applications in drug discovery and personalized therapy.
Over the last ten years, several new and therapeutically relevant cancer drugs targeting tyrosine kinases signaling pathways have been developed. Tyrosine kinase inhibitors (TKIs) are a pharmaceutical class of small molecules, orally available, well-tolerated, worldwide approved drugs for the treatment of several neoplasms, including lung, breast, kidney and pancreatic cancer as well as gastro-intestinal stromal tumors and chronic myeloid leukemia. This comprehensive review focuses on the most relevant members of the first and the second generation TKIs designed to interact with receptor and nonreceptor TKs. Attention is mainly focused on molecular mechanisms in in vitro and in vivo models related to the clinical activity of the drugs and to the development of resistance to treatment, still the major challenge in cancer research and care.
PurposeProspective detection of patients with advanced rectal cancer (LARC) who have a higher probability of responding to preoperative chemoradiotherapy (CRT) may provide individualized therapy. Lipidomics is an emerging science dedicated to the characterization of lipid fingerprint involved in different pato-physiological conditions. The purpose of this study is to highlight a typical lipid signature able to predict the tumor response to CRT.Experimental DesignA prospective global analysis of lipids in 54 sera from 18 LARC patients treated with preoperative CRT was performed. Samples were collected at 3 time points: before (T0), at 14th day and at 28th day of CRT. An open LC-MS/MS analysis was performed to characterize lipid expression at T0. Differential lipids were validated by an independent approach and studied during treatment.ResultsFrom 65 differential lipids highlighted between responder (RP) vs not responder (NRP) patients, five lipids were validated to predict response at T0: SM(d18:2/18:1), LysoPC (16:0/0:0), LysoPC (15:1(9z)/0:0), Lyso PE (22:5/0:0) and m/z= 842.90 corresponding to a PC containing 2 fatty acids of 40 carbons totally. The levels of these lipids were lower in NRP before treatment. The ROC curve obtained by combining these five lipid signals showed an AUC of 0.95, evidence of good sensitivity and specificity in discriminating groups.ConclusionOur results are in agreement with previous evidences about the role of lipids in determining the tumor response to therapy and suggest that the study of serum lipid could represent a useful tool in prediction of CRT response and in personalizing treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.