Studies investigating microRNAs as potential biomarkers for cancer, immune-related diseases, or cardiac pathogenic diseases, among others, have exponentially increased in the last years. In particular, altered expression of specific miRNAs correlates with the occurrence of several diseases, making these molecules potential molecular tools for non-invasive diagnosis, prognosis, and response to therapy. Nonetheless, microRNAs are not in clinical use yet, due to inconsistencies in the literature regarding the specific miRNAs identified as biomarkers for a specific disease, which in turn can be attributed to several reasons, including lack of assay standardization and reproducibility. Technological limitations in circulating microRNAs measurement have been, to date, the biggest challenge for using these molecules in clinical settings. In this review we will discuss pre-analytical, analytical, and post-analytical challenges to address the potential technical biases and patient-related parameters that can have an influence and should be improved to translate miRNA biomarkers to the clinical stage. Moreover, we will describe the currently available methods for circulating miRNA expression profiling and measurement, underlining their advantages and potential pitfalls.
Cutaneous melanoma is the most aggressive form of skin cancer. Despite the significant advances in the management of melanoma in recent decades, it still represents a challenge for clinicians. The TP53 gene, the guardian of the genome, which is altered in more than 50% of human cancers, is rarely mutated in melanoma. More recently, researchers started to appreciate the importance of shorter p53 isoforms as potential modifiers of the p53-dependent responses. We analyzed the expression of p53 and p73 isoforms both at the RNA and protein level in a panel of melanoma-derived cell lines with different TP53 and BRAF status, in normal conditions or upon treatment with common anti-cancer DNA damaging agents or targeted therapy. Using lentiviral vectors, we also generated stable clones of H1299 p53 null cells over-expressing the less characterized isoforms Δ160p53α, Δ160p53β, and Δ160p53γ. Further, we obtained two melanoma-derived cell lines resistant to BRAF inhibitor vemurafenib. We observed that melanoma cell lines expressed a wide array of p53 and p73 isoforms, with Δ160p53α as the most variable one. We demonstrated for the first time that Δ160p53α, and to a lesser extent Δ160p53β, can be recruited on chromatin, and that Δ160p53γ can localize in perinuclear foci; moreover, all Δ160p53 isoforms can stimulate proliferation and in vitro migration. Lastly, vemurafenib-resistant melanoma cells showed an altered expression of p53 and p73 isoforms, namely an increased expression of potentially pro-oncogenic Δ40p53β and a decrease in tumor-suppressive TAp73β. We therefore propose that p53 family isoforms can play a role in melanoma cells’ aggressiveness.
Over the past 15 years, zebrafish have emerged as a powerful tool for studying human cancers. Transgenic techniques have been employed to model different types of tumors, including leukemia, melanoma, glioblastoma and endocrine tumors. These models present histopathological and molecular conservation with their human cancer counterparts and have been fundamental for understanding mechanisms of tumor initiation and progression. Moreover, xenotransplantation of human cancer cells in embryos or adult zebrafish offers the advantage of studying the behavior of human cancer cells in a live organism. Chemical-genetic screens using zebrafish embryos have uncovered novel druggable pathways and new therapeutic strategies, some of which are now tested in clinical trials. In this review, we will report on recent advances in using zebrafish as a model in cancer studies—with specific focus on four cancer types—where zebrafish has contributed to novel discoveries or approaches to novel therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.