Oxytocin (OT) is a neuropeptide widely known for its peripheral hormonal effects (i.e., parturition and lactation) and central neuromodulatory functions, related especially to social behavior and social, spatial, and episodic memory. The hippocampus is a key structure for these functions, it is innervated by oxytocinergic fibers, and contains OT receptors (OTRs). The hippocampal OTR distribution is not homogeneous among its subregions and types of neuronal cells, reflecting the specificity of oxytocin’s modulatory action. In this review, we describe the most recent discoveries in OT/OTR signaling in the hippocampus, focusing primarily on the electrophysiological oxytocinergic modulation of the OTR-expressing hippocampal neurons. We then look at the effect this modulation has on the balance of excitation/inhibition and synaptic plasticity in each hippocampal subregion. Additionally, we review OTR downstream signaling, which underlies the OT effects observed in different types of hippocampal neuron. Overall, this review comprehensively summarizes the advancements in unraveling the neuromodulatory functions exerted by OT on specific hippocampal networks.
The perirhinal cortex (PRC) is a polymodal associative region of the temporal lobe that works as a gateway between cortical areas and hippocampus. In recent years, an increasing interest arose in the role played by the PRC in learning and memory processes, such as object recognition memory, in contrast with certain forms of hippocampus-dependent spatial and episodic memory. The integrative properties of the PRC should provide all necessary resources to select and enhance the information to be propagated to and from the hippocampus. Among these properties, we explore in this paper the ability of the PRC neurons to amplify the output voltage to current input at selected frequencies, known as membrane resonance. Within cerebral circuits the resonance of a neuron operates as a filter toward inputs signals at certain frequencies to coordinate network activity in the brain by affecting the rate of neuronal firing and the precision of spike timing. Furthermore, the ability of the PRC neurons to resonate could have a fundamental role in generating subthreshold oscillations and in the selection of cortical inputs directed to the hippocampus. Here, performing whole-cell patch-clamp recordings from perirhinal pyramidal neurons and GABAergic interneurons of GAD67-GFP+ mice, we found, for the first time, that the majority of PRC neurons are resonant at their resting potential, with a resonance frequency of 0.5–1.5 Hz at 23°C and of 1.5–2.8 Hz at 36°C. In the presence of ZD7288 (blocker of HCN channels) resonance was abolished in both pyramidal neurons and interneurons, suggesting that Ih current is critically involved in resonance generation. Otherwise, application of TTx (voltage-dependent Na+ channel blocker) attenuates the resonance in pyramidal neurons but not in interneurons, suggesting that only in pyramidal neurons the persistent sodium current has an amplifying effect. These experimental results have also been confirmed by a computational model. From a functional point of view, the resonance in the PRC would affect the reverberating activity between neocortex and hippocampus, especially during slow wave sleep, and could be involved in the redistribution and strengthening of memory representation in cortical regions.
Many species use a temporary drop in body temperature and metabolic rate (torpor) as a strategy to survive food scarcity. A similar profound hypothermia is observed with activation of preoptic neurons that express the neuropeptides Pituitary Adenylate-Cyclase-Activating Polypeptide (PACAP)1, Brain Derived Neurotrophic Factor (BDNF)2, or Pyroglutamylated RFamide Peptide (QRFP)3, the vesicular glutamate transporter, Vglut2 4,5 or the leptin receptor6 (LepR), estrogen 1 receptor (Esr1)7 or prostaglandin E receptor 3 (EP3R) in mice8. However, most of these genetic markers are found on multiple populations of preoptic neurons and only partially overlap with one another. We report here that expression of the EP3R marks a unique population of median preoptic (MnPO) neurons that are required both for lipopolysaccharide (LPS)-induced fever9 and for torpor. These MnPOEP3R neurons produce persistent fever responses when inhibited and prolonged hypothermic responses when activated either chemo- or opto-genetically even for brief periods of time. The mechanism for these prolonged responses appears to involve increases in intracellular calcium in individual EP3R-expressing preoptic neurons that persist for many minutes up to hours beyond the termination of a brief stimulus. These properties endow MnPOEP3R neurons with the ability to act as a two-way master switch for thermoregulation.
Introduction The suprachiasmatic nucleus (SCN) is responsible for generating the circadian rhythmicity in mammals. The ventral region or core of the SCN contains neurons that express the neuropeptide vasoactive intestinal polypeptide (VIP). VIP signaling is central for coherency and synchrony of SCN activity. VIP-expressing neurons in the SCN densely project to the ventral subregions of the subparaventricular zone (vSPZ). We studied the effects of VIP on vSPZ neurons in brain slices of mice with a combined calcium imaging and whole-cell patch-clamp recording techniques. We used calcium imaging to assess the effects of VIP on vSPZ neurons as a population and we acquired patch-clamp recordings to explore the effects of VIP on the electrical properties and the synaptic inputs to vSPZ neurons. Methods We expressed GCamp6 in vSPZ neurons by stereotaxically injecting AAV10-DIO-Ef1a-GCamp6 into the vSPZ of vGAT-IRES-Cre mice. Brain slices were prepared two weeks later and images were captured using a standard GFP filter set. We performed whole-cell recordings of the vSPZ neurons of wild-type mice. We assessed the effects of VIP on the membrane potential and the on excitatory synaptic input in vSPZ neurons. Results Using GCamp6-based in vitro calcium imaging we found that VIP excites 17% of vSPZ neurons and this effect was maintained in the presence of tetrodotoxin (TTX) and synaptic blockers for AMPA/NMDA and GABAA transmissions suggesting a direct effect of VIP on vSPZ neurons. We confirmed this result with patch-clamp recordings. We found that 29% of vSPZ neurons were excited by VIP. VIP produced a membrane depolarization of vSPZ neurons in the presence of antagonists for AMPA/NMDA and GABAA receptors. In addition, we found that in a small percentage of vSPZ neurons VIP increased the frequency of the glutamatergic excitatory postsynaptic currents, suggesting an additional excitatory mechanism. Conclusion Our results demonstrate that exogenous VIP directly excites the vSPZ neurons producing an increase in intracellular calcium and membrane depolarization. In addition, VIP increases glutamatergic afferent inputs to vSPZ neurons indicating an additional synergistic excitation. We conclude that when VIP is released from the SCN VIP fibers it can activate vSPZ neurons. Support (if any) NS091126 and HL149630.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.