An investigation is reported on the interfacial properties of nanometric colloidal silica dispersions in the presence of a cationic surfactant. These properties are the result of different phenomena such as the particle attachment at the interface and the surfactant adsorption at the liquid and at the particle interfaces. Since the latter strongly influences the hydrophobicity/lipophilicity of the particle, i.e., the particle affinity for the fluid interfacial environment, all those phenomena are closely correlated. The equilibrium and dynamic interfacial tensions of the liquid/air and liquid/oil interfaces have been measured as a function of the surfactant and particle concentration. The interfacial rheology of the same systems has been also investigated by measuring the dilational viscoelasticity as a function of the area perturbation frequency. These results are then crossed with the values of the surfactant adsorption on the silica particles, indirectly estimated through experiments based on the centrifugation of the dispersions. In this way it has been possible to point out the mechanisms determining the observed kinetic and equilibrium features. In particular, an important role in the mixed particle-surfactant layer reorganization is played by the Brownian transport of particles from the bulk to the interface and by the surfactant redistribution between the particle and fluid interface.
The hydrophobicity of a particle surface can be tuned by the addition of surfactants that change the surface free energy for their attachment to a liquid interface. In this work, we report an experimental study where the wettability properties of silica nanoparticles are modified by the adsorption of alkyltrimethylammonium surfactants (C n TAB, n ¼ 12, 16) on the surface of the particles. We have pointed out that the wettability of the complexes is controlled by an intricate balance of electrostatic and hydrophobic interactions between the particle surface and the surfactant. These interactions play an important role in the structure of the surfactant-particle nanocomposite interfacial layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.