Mutations in the SPG7 gene encoding a mitochondrial protein termed paraplegin, are responsible for a recessive form of hereditary spastic paraparesis. Only few studies have so far been performed in large groups of hereditary spastic paraplegia (HSP) patients to determine the frequency of SPG7 mutations. Here, we report the result of a mutation screening conducted in a large cohort of 135 Italian HSP patients with the identification of six novel point mutations and one large intragenic deletion. Sequence analysis of the deletion breakpoint, together with secondary structure predictions of the deleted region, indicate that a complex rearrangement, likely caused by extensive secondary structure formation mediated by the short interspersed nuclear element (SINE) retrotransposons, is responsible for the deletion event. Biochemical studies performed on fibroblasts from three mutant patients revealed mild and heterogeneous mitochondrial dysfunctions that would exclude a specific association of a complex I defect with the pathology at the fibroblast level. Overall, our data confirm that SPG7 point mutations are rare causes of HSP, in both sporadic and familial forms, while underlying the puzzling and intriguing aspects of histological and biochemical consequences of paraplegin loss.
Interpretation: The study suggests an increase in the incidence of pediatric T1D in Lombardy throughout the past five years. Pandemic waves may have affected the clinical presentation at onset.
The late-infantile-onset forms of neuronal ceroid lipofuscinosis (LINCL) are the most genetically heterogeneous group among the autosomal recessive neuronal ceroid lipofuscinoses (NCLs), with causative mutations found in CLN1, CLN2, CLN5, CLN6, CLN7 (MFSD8), and CLN8 genes. Homozygous mutations in CLN8 are associated with two distinct phenotypes: progressive epilepsy and mental retardation (EPMR), first identified in Finland; and a variant of late-infantile NCL (v-LINCL) described in a subset of Turkish and Italian patients. The function of the protein encoded by CLN8 is currently unknown. Here we report the identification of an Italian v-LINCL patient with a complete isodisomy of chromosome 8, leading to homozygosity of a maternally-inherited 3-bp deletion in CLN8 gene (c.180_182delGAA, p.Lys61del). Notably, uniparental disomy (UPD) has never been described associated with the NCLs. In addition, we provide evidence of the biological role of CLN8 characterized by expressing in different neuronal cell models the native protein, the protein carrying the mutation identified here, or three additional missense mutations previously described. Our results, validated through a gene silencing approach, indicate that CLN8 plays a role in cell proliferation during neuronal differentiation and in protection against cell death.
Background: Hereditary spastic paraplegia (HSP) is a group of genetically heterogeneous disorders characterized by progressive spasticity of the lower limbs. Mutations in the SPG4 gene, which encodes spastin protein, are responsible for up to 45% of autosomal dominant cases.Objective: To search for disease-causing mutations in a large series of Italian patients with HSP.Design: Samples of DNA were analyzed by direct sequencing of all exons in SPG4. Samples from a subset of patients were also analyzed by direct sequencing of all exons in SPG3A, SPG6, SPG10, and SPG13. Setting: Molecular testing facility in Italy. Patients: Sixty unrelated Italian patients with pure (n=50) and complicated (n = 10) HSP. Main Outcome Measures: Mutations in SPG4, SPG3A, SPG6, SPG10, and SPG13.Results: We identified 12 different mutations, 8 of which were novel, in 13 patients. No mutations of any of the other HSP genes tested were found in 15 patients with sporadic pure HSP who did not have mutations in the SPG4 gene.
Conclusions:The overall rate of mutation in the SPG4 gene within our sample was 22%, rising to 26% when only patients with pure HSP were considered. The negative result obtained in 15 patients without mutations in SPG4 in whom 4 other genes were analyzed (SPG3A, SPG6, SPG10, and SPG13) indicate that these genes are not frequently mutated in sporadic pure HSP.
Background: Sodium channel alpha 1 subunit gene, SCN1A, is the gene encoding the neuronal voltage-gated sodium channel ␣ 1 subunit (Na v 1.1) and is mutated in different forms of epilepsy. Mutations in this gene were observed in more than 70% of patients with severe myoclonic epilepsy of infancy (SMEI) and were also found in different types of infantile epileptic encephalopathy.Objective: To search for disease-causing mutations in SCN1A in patients with cryptogenic epileptic syndromes (ie, syndromes with an unknown cause).Design: Clinical characterization and molecular genetic analysis of a cohort of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.