Diuron [3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea] is a substituted urea herbicide, carcinogenic for the rat urinary bladder. It has been hypothesized that Diuron cytotoxicity, resulting in regenerative proliferation, leads to urothelial hyperplasia and, finally, to bladder tumors, but molecular mechanisms of carcinogenesis have not still fully investigated. Here, we report the results of a study aimed at verifying the involvement of BAG3, an intracellular protein expressed in several tumors, in the Diuron‐induced carcinogenesis. For this purpose, we analyzed the effect of Diuron on human primary urothelial cells and on human dermal fibroblasts. We found that while high concentrations of Diuron have a cytotoxic effect in human primary urothelial cells, in the same cells, noncytotoxic concentrations of the herbicide induce BAG3 expression. These findings show that BAG3 is a molecular target of Diuron and unravel the possible involvement of BAG3 protein in bladder carcinogenesis induced by the herbicide. In addition, these results suggest that BAG3 might be a potential early biomarker of damage induced by chronic exposure to Diuron.
Hypoxia and angiogenesis in solid tumors are often strictly linked to the development of fibrotic tissues, a detrimental event that compromises the antitumor immunity. As a consequence, tumor aggressiveness and poor patient prognosis relate to higher incidence of tissue fibrosis and stromal stiffness. The molecular pathways through which normal fibroblasts are converted in cancer‐associated fibroblasts (CAFs) have a central role in the onset of fibrosis in tumor stroma, thus emerging as a strategic target of novel therapeutic approaches for cancer disease. Several studies addressed the role of BAG3 in sustaining growth and survival of cancer cell and also shed light on the different mechanisms in which the intracellular protein is involved. More recently, new pieces of evidence revealed a pivotal role of extracellular BAG3 in pro‐tumor cell signaling in the tumor microenvironment, as well as its involvement in the development of fibrosis in tumor tissues. Here we report further data showing the presence of the BAG3 receptor (Interferon‐induced transmembrane protein [IFITM]‐2) on the plasma membrane of normal dermal fibroblasts and the activity of BAG3 as a factor able to induce the expression of α‐smooth muscle actin and the phosphorylation of AKT and focal adhesion kinase, that sustain CAF functions in tumor microenvironment. Furthermore, in agreement with these findings, bag3 gene expression has been analyzed by high throughput RNA sequencing databases from patients‐derived xenografts. A strong correlation between bag3 gene expression and patients' survival was found in several types of fibrotic tumors. The results obtained provide encouraging data that identify BAG3 as a promising therapeutic target to counteract fibrosis in tumors.
The BAG3- and SIRPα- mediated pathways trigger distinct cellular targets and signaling mechanisms in pancreatic cancer microenvironment. To explore their functional connection, we investigated the effects of their combined blockade on cancer growth in orthotopic allografts of pancreatic cancer mt4–2D cells in immunocompetent mice. The anti-BAG3 + anti-SIRPα mAbs treatment inhibited (p = 0.007) tumor growth by about the 70%; also the number of metastatic lesions was decreased, mostly by the effect of the anti-BAG3 mAb. Fibrosis and the expression of the CAF activation marker α-SMA were reduced by about the 30% in animals treated with anti-BAG3 mAb compared to untreated animals, and appeared unaffected by treatment with the anti-SIRPα mAb alone; however, the addition of anti-SIRPα to anti-BAG3 mAb in the combined treatment resulted in a > 60% (p < 0.0001) reduction of the fibrotic area and a 70% (p < 0.0001) inhibition of CAF α-SMA positivity. Dendritic cells (DCs) and CD8+ lymphocytes, hardly detectable in the tumors of untreated animals, were modestly increased by single treatments, while were much more clearly observable (p < 0.0001) in the tumors of the animals subjected to the combined treatment. The effects of BAG3 and SIRPα blockade do not simply reflect the sum of the effects of the single blockades, indicating that the two pathways are connected by regulatory interactions and suggesting, as a proof of principle, the potential therapeutic efficacy of a combined BAG3 and SIRPα blockade in pancreatic cancer.
Pancreatic ductal adenoma carcinoma (PDAC) is considered one of the deadliest solid cancers as it is usually diagnosed in advanced stages and has a poor response to treatment. The enormous effort made in the last 2 decades in the oncology field has not led to significant progress in improving early diagnosis or therapy for PDAC. The stroma of PDAC plays an active role in tumour initiation and progression and includes immune cells and stromal cells. We previously reported that Bcl2‐associated athanogene (BAG3) secreted by PDAC cells activates tumour‐associated macrophages to promote tumour growth. The disruption of this tumour–stroma axis by the anti‐BAG3 H2L4 therapeutic antibody is sufficient to delay tumour growth and limit metastatic spreading in different PDAC preclinical models. In the present study, we examined the role of BAG3 to activate human fibroblasts (HF) in releasing cytokines capable of supporting tumour progression. Treatment of fibroblasts with recombinant BAG3 induced important changes in the organisation of the cytoskeleton of these cells and stimulated the production of interleukin‐6, monocyte chemoattractant protein‐1/C–C motif chemokine ligand 2, and hepatocyte growth factor. Specifically, we observed that BAG3 triggered a depolymerisation of microtubules at the periphery of the cell while they were conserved in the perinuclear area. Conversely, the vimentin‐based intermediate filaments increased and spread to the edges of the cells. Finally, the conditioned medium (CM) collected from BAG3‐treated HF promoted the survival, proliferation, and migration of the PDAC cells. Blocking of the PDAC‐fibroblast axis by the H2L4 therapeutic anti‐BAG3 antibody, resulted in inhibition of cytokine release and, consequently, the inhibition of the migratory phenotype conferred by the CM to PDAC cells.
Front Cover: The cover image is based on the Research Article BAG3 induces fibroblasts to release key cytokines involved in pancreatic cell migration by Beatrice Dufrusine et al., https://doi.org/10.1002/jcb.30172.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.