Vitamin D deficiency has been clearly linked to major chronic diseases associated with oxidative stress, inflammation, and aging, including cardiovascular and neurodegenerative diseases, diabetes, and cancer. In particular, the cardiovascular system appears to be highly sensitive to vitamin D deficiency, as this may result in endothelial dysfunction and vascular defects via multiple mechanisms. Accordingly, recent research developments have led to the proposal that pharmacological interventions targeting either vitamin D deficiency or its key downstream effects, including defective autophagy and abnormal pro-oxidant and pro-inflammatory responses, may be able to limit the onset and severity of major cerebrovascular diseases, such as stroke and cerebrovascular malformations. Here we review the available evidence supporting the role of vitamin D in preventing or limiting the development of these cerebrovascular diseases, which are leading causes of disability and death all over the world.
Bone represents the second most common site of distant metastases in differentiated thyroid cancer (DTC). The clinical course of DTC patients with bone metastases (BM) is quite heterogeneous, but generally associated with low survival rates. Skeletal-related events might be a serious complication of BM, resulting in high morbidity and impaired quality of life. To achieve disease control and symptoms relief, multimodal treatment is generally required: radioiodine therapy, local procedures-including surgery, radiotherapy and percutaneous techniques-and systemic therapies, such as kinase inhibitors and antiresorptive drugs. The management of DTC with BM is challenging: a careful evaluation and a personalized approach are essential to improve patients' outcomes. To date, prospective studies focusing on the main clinical aspects of DTC with BM are scarce; available analyses mainly include cohorts assembled over multiple decades, small samples sizes and data about BM not always separated from those regarding other distant metastases. The aim of this review is to summarize the most recent evidences and the unsolved questions regarding BM in DTC, analyzing several key issues: pathophysiology, prognostic factors, role of anatomic and functional imaging, and clinical management.
This article contains additional data related to the original research article entitled “KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: implication for Cerebral Cavernous Malformation disease” (Antognelli et al., 2017) [1].Data were obtained by si-RNA-mediated gene silencing, qRT-PCR, immunoblotting, and immunohistochemistry studies, and enzymatic activity and apoptosis assays. Overall, they support, complement and extend original findings demonstrating that KRIT1 loss-of-function induces a redox-sensitive and JNK-dependent sustained upregulation of the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), and a drop in intracellular levels of AP-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that sensitizes cells to oxidative DNA damage and apoptosis.In particular, immunoblotting analyses of Nrf2, Glo1, AP-modified Hsp70 and Hsp27 proteins, HO-1, phospho-c-Jun, phospho-ERK5, and KLF4 expression levels were performed both in KRIT1-knockout MEF cells and in KRIT1-silenced human brain microvascular endothelial cells (hBMEC) treated with the antioxidant Tiron, and compared with control cells. Moreover, immunohistochemistry analysis of Nrf2, Glo1, phospho-JNK, and KLF4 was performed on histological samples of human CCM lesions. Finally, the role of Glo1 in the downregulation of AP-modified Hsp70 and Hsp27 proteins, and the increase in apoptosis susceptibility associated with KRIT1 loss-of-function was addressed by si-RNA-mediated Glo1 gene silencing in KRIT1-knockout MEF cells.
Loss-of-function mutations in the KRIT1 gene are associated with the pathogenesis of cerebral cavernous malformations (CCMs), a major cerebrovascular disease still awaiting therapies. Accumulating evidence demonstrates that KRIT1 plays an important role in major redox-sensitive mechanisms, including transcriptional pathways and autophagy, which play major roles in cellular homeostasis and defense against oxidative stress, raising the possibility that KRIT1 loss has pleiotropic effects on multiple redox-sensitive systems. Using previously established cellular models, we found that KRIT1 loss-of-function affects the glutathione (GSH) redox system, causing a significant decrease in total GSH levels and increase in oxidized glutathione disulfide (GSSG), with a consequent deficit in the GSH/GSSG redox ratio and GSH-mediated antioxidant capacity. Redox proteomic analyses showed that these effects are associated with increased S-glutathionylation of distinct proteins involved in adaptive responses to oxidative stress, including redox-sensitive chaperonins, metabolic enzymes, and cytoskeletal proteins, suggesting a novel molecular signature of KRIT1 loss-of-function. Besides providing further insights into the emerging pleiotropic functions of KRIT1, these findings point definitively to KRIT1 as a major player in redox biology, shedding new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell sensitivity to oxidative stress, which may eventually lead to cellular dysfunctions and CCM disease pathogenesis.
Purpose Pituitary metastases (PM) are uncommon findings and are mainly derived from breast and lung cancers. No extensive review of PM from neuroendocrine neoplasms (NENs) is on record. Here we describe a clinical case of PM from pancreatic NEN and review the clinical features of PM from NENs reported in the literature. Methods A case of PM from a pancreatic NEN followed at our institution is described. We also reviewed the 43 cases of PM from NENs reported in the literature. Results A 59-year old female patient, previously submitted to duodeno-cephalo-pancreasectomy for a well-differentiated pancreatic NEN, with known hepatic metastases, underwent a 68 Ga-DOTATOC PET/CT that revealed an uptake in the pituitary gland. A subsequent MRI displayed a pituitary lesion, with suprasellar extension. After a hormonal and genetic diagnostic workup that excluded the diagnosis of MEN 1, the worsening of headache and visual impairment and the growth of the lesion lead to its surgical removal. A pituitary localization of the pancreatic NEN was identified. Regarding the published cases of PM from NENs, the most common tumour type was small cell lung cancer (SCLC), accounting for nearly half of the cases, followed by bronchial and pancreatic well differentiated NENs. The most frequent symptom was a variable degree of visual impairment, while headache was reported in half of the cases. Partial or total anterior hypopituitarism was present in approximately three quarters of the cases, while diabetes insipidus was less common. The most frequent treatment for PM was surgical resection, followed by radiotherapy and chemotherapy. The clinical outcome was in line with previous reports of PM from solid tumours, with a median survival of 14 months. Surgery of PM was associated with prolonged survival. Conclusions PM from NENs have clinical features similar to metastases derived from other solid tumours, albeit the involvement of the anterior pituitary seems more frequent; a thorough pituitary hormonal evaluation is mandatory, after focused radiological studies, particularly if a surgical approach is considered. The optimal management of PM remains disputed and seems mainly driven by the aggressiveness of the primary tumour and the presence of symptoms. In well-differentiated NENs, particularly in the case of symptomatic PM, surgical removal may be a reasonable approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.