CTLA-4 (CD152) is a cell surface receptor that behaves as a negative regulator of the proliferation and the effector function of T cells. We have previously shown that CTLA-4 is also expressed on neoplastic lymphoid and myeloid cells, and it can be targeted to induce apoptosis. In our study, we have extended our analysis and have discovered that surface expression of CTLA-4 is detectable by flow cytometry on 30 of 34 (88%)
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare disease of controversial origin recently recognized as a neoplasm deriving from plasmacytoid dendritic cells (pDCs). Nevertheless, it remains an orphan tumor with obscure biology and dismal prognosis. To better understand the pathobiology of BPDCN and discover new targets for effective therapies, the gene expression profile (GEP) of 25 BPDCN samples was analyzed and compared with that of pDCs, their postulated normal counterpart. Validation was performed by immunohistochemistry (IHC), whereas functional experiments were carried out ex vivo. For the first time at the molecular level, we definitely recognized the cellular derivation of BPDCN that proved to originate from the myeloid lineage and in particular, from resting pDCs. Furthermore, thanks to an integrated bioinformatic approach we discovered aberrant activation of the NF-kB pathway and suggested it as a novel therapeutic target. We tested the efficacy of anti-NF-kB-treatment on the BPDCN cell line CAL-1, and successfully demonstrated by GEP and IHC the molecular shutoff of the NF-kB pathway. In conclusion, we identified a molecular signature representative of the transcriptional abnormalities of BPDCN and developed a cellular model proposing a novel therapeutic approach in the setting of this otherwise incurable disease.
Recent findings have highlighted that constitutively active phosphatidylinositol 3-kinase (PI3K)/Akt/ mammalian target of rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it upregulates cell proliferation, survival, and drug resistance. These observations lend compelling weight to the application of PI3K/Akt/mTOR inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of the novel dual PI3K/mTOR inhibitor NVP-BEZ235, an orally bioavailable imidazoquinoline derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. NVP-BEZ235 was cytotoxic to a panel of T-ALL cell lines as determined by MTT assays. NVP-BEZ235 treatment resulted in cell cycle arrest and apoptosis. Western blots showed a dose-and timedependent dephosphorylation of Akt and mTORC1 downstream targets in response to NVP-BEZ235. Remarkably, NVP-BEZ235 targeted the side population of both T-ALL cell lines and patient lymphoblasts, which might correspond to leukemia-initiating cells, and synergized with chemotherapeutic agents (cyclophosphamide, cytarabine, dexamethasone) currently used for treating T-ALL patients. NVP-BEZ235 reduced chemoresistance to vincristine induced in Jurkat cells by coculturing with MS-5 stromal cells, which mimic the bone marrow microenvironment. NVP-BEZ235 was cytotoxic to T-ALL patient lymphoblasts displaying pathway activation, where the drug dephosphorylated eukaryotic initiation factor 4E-binding protein 1, at variance with rapamycin. Taken together, our findings indicate that longitudinal inhibition at two nodes of the PI3K/Akt/mTOR network with NVP-BEZ235, either alone or in combination with chemotherapeutic drugs, may be an efficient treatment of those T-ALLs that have aberrant upregulation of this signaling pathway for their proliferation and survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.