The aim of this study was to address, in normal knees, the variability of posterior offset of femoral condyles and tibial slope, and the presence of any correlation between the two that might be needed to achieve an adequate joint motion in flexion. Magnetic resonance images of normal knees of 80 subjects, 45 males and 35 females, with a mean age of 38.9 years, were analysed. Measurements were performed by two independent observers using an imaging visualization software. The tibial slope averaged 8 and 7.7°, on the medial and lateral sides, respectively (P = 0.2); the mean posterior offset of femoral condyles was 27.4 and 25.2 mm on the two sides, respectively (P = 0.0001). The variation coefficient of the condylar offset and tibial slope was 11.5 and 38%, respectively. In the medial compartment, a significant correlation was found between the femoral condylar offset and the tibial slope, while the same was not observed in the lateral compartment of the knee. Magnetic resonance imaging allows the assessment of tibial slope and femoral condylar offset in the medial and lateral side separately, taking into account any difference between the two compartments. The sagittal tibial slope exhibits a greater variability compared with the posterior offset of femoral condyles. The correlation found, in the medial compartment, between the tibial slope and femoral condylar offset suggests that the reconstitution of the proper morphology of the posterior part of the knee joint may be necessary to obtain a full range of motion in flexion after total knee replacement.
In the present study, we report the benefits of a passive and fully articulated exoskeleton on multiple sclerosis patients by means of behavioral and electrophysiological measures, paying particular attention to the prefrontal cortex activity. Multiple sclerosis is a neurological condition characterized by lesions of the myelin sheaths that encapsulate the neurons of the brain, spine and optic nerve, and it causes transient or progressive symptoms and impairments in gait and posture. Up to 50% of multiple sclerosis patients require walking aids and 10% are wheelchair-bound 15 years following the initial diagnosis. We tested the ability of a new orthosis, the “Human Body Posturizer”, designed to improve the structural and functional symmetry of the body through proprioception, in multiple sclerosis patients. We observed that a single Human Body Posturizer application improved mobility, ambulation and response accuracy, in all of the tested patients. Most importantly, we associated these clinical observations and behavioral effects to changes in brain activity, particularly in the prefrontal cortex.
In skeletal muscle, which mainly contains postmitotic myonuclei, it has been suggested that telomere length remains roughly constant throughout adult life, or shortens in response to physiopathological conditions in muscle diseases or in the elderly. However, telomere length results from both the replicative history of a specific tissue and the exposure to environmental, DNA damage-related factors, therefore the predictive biological significance of telomere measures should combine the analysis of the various interactive factors. In the present study, we analysed any relationship between telomere length [mean and minimum terminal restriction fragment (TRF) length] chronological age, oxidative damage (4-HNE, protein carbonyls), catalase activity, and heat shock proteins expression (αB-crystallin, Hsp27, Hsp90) in semitendinous muscle biopsies of 26 healthy adult males between 20 and 50 years of age, also exploring the influence of regular exercise participation. The multiple linear regression analysis identified age, 4-HNE, catalase, and training status as significant independent variables associated with telomere length and jointly accounting for ∼30-36% of interindividual variation in mean and/or minimum TRF length. No association has been identified between telomere length and protein carbonyl, αB-crystallin, Hsp27, and Hsp90, as well as between age and the variables related to stress response. Our results showed that skeletal muscle from healthy adults displays an age-dependent telomere attrition and that oxidised environment plays an age-independent contribution, partially influenced by exercise training.
Background and purpose Whether tibial torsion affects the positioning of extramedullary instrumentation and is a possible factor in malalignment of the tibial component in total knee arthroplasty (TKA) is unknown. We assessed the influence of tibial torsion on distal alignment of extramedullary systems for TKA, using the center of the intermalleolar distance as anatomical reference at the ankle joint.Patients and methods We analyzed CT scans of knee and ankle joints of 50 patients with knee osteoarthritis (mean age 73 years, 52 legs). The tibial mechanical axis was identified and translated anteriorly at the level of the medial one-third (proximal AP axis 1), at the medial border of the tibial tuberosity (proximal AP axis 2), and at the level of the talar dome (distal AP axis). The center of the intermalleolar distance and the width of the medial and lateral malleolus were calculated. The proximal AP axes 1 and 2 were translated at the level of the ankle joint and any difference between their alignment and the distal AP axis was calculated as angular and linear values.Results The center of the ankle joint was located, on average 2 mm medial to that of the intermalleolar distance. The distal AP axis was externally rotated by 18° and 27° compared to the proximal AP axes 1 and 2, respectively. Overall, the center of the ankle joint was shifted laterally by 9–11 mm with respect to the proximal AP tibial axes.Interpretation To avoid a varus tibial cut in TKA, extramedullary alignment systems should be aligned more medially at the ankle joint than previously thought, due to the effect of tibial torsion and—to a lesser extent—to the different malleolar width.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.