Chalcones have shown a broad spectrum of biological activities with clinical potential against various diseases. The biological activities are mainly attributed to the presence in the chalcones of the α,β-unsaturated carbonyl system, perceived as a potential Michael acceptor. Chalcones could activate the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway through a Michael addition reaction with the cysteines of Keap1, which acts as a redox sensor and negative regulator of Nrf2. This modification allows the dissociation of Nrf2 from the cytoplasmic complex with Keap1 and its nuclear translocation. At this level, Nrf2 binds to the antioxidant response element (ARE) and activates the expression of several detoxification, antioxidant and anti-inflammatory genes as well as genes involved in the clearance of damaged proteins. In this regard, the Keap1/Nrf2–ARE pathway is a new potential pharmacological target for the treatment of many chronic diseases. In this review we summarize the current progress in the study of Keap1/Nrf2–ARE pathway activation by natural and synthetic chalcones and their potential pharmacological applications. Among the pharmacological activities highlighted, anti-inflammatory activity was more evident than others, suggesting a multi-target Michael acceptor mechanism for the chalcones involving key regulators of the Nrf2 and nuclear factor- κB (NF-κB) pathways.
Trypanothione reductase (TR) is a key factor in the redox homeostasis of trypanosomatid parasites, critical for survival in the hostile oxidative environment generated by the host to fight infection. TR is considered an attractive target for the development of new trypanocidal agents as it is essential for parasite survival but has no close homolog in humans. However, the high efficiency and turnover of TR challenging targets since only potent inhibitors, with nanomolar IC50, can significantly affect parasite redox state and viability. To aid the design of effective compounds targeting TR, we performed a fragment-based crystal screening at the Diamond Light Source XChem facility using a library optimized for follow-up synthesis steps. The experiment, allowing for testing over 300 compounds, resulted in the identification of 12 new ligands binding five different sites. Interestingly, the screening revealed the existence of an allosteric pocket close to the NADPH binding site, named the “doorstop pocket” since ligands binding at this site interfere with TR activity by hampering the “opening movement” needed to allow cofactor binding. The second remarkable site, known as the Z-site, identified by the screening, is located within the large trypanothione cavity but corresponds to a region not yet exploited for inhibition. The fragments binding to this site are close to each other and have some remarkable features making them ideal for follow-up optimization as a piperazine moiety in three out of five fragments.
Alzheimer's disease is likely to be caused by copathogenic factors including aggregation of Aβ peptides into oligomers and fibrils, neuroinflammation and oxidative stress. To date, no effective treatments are available and because of the multifactorial nature of the disease, it emerges the need to act on different and simultaneous fronts. Despite the multiple biological activities ascribed to curcumin as neuroprotector, its poor bioavailability and toxicity limit the success in clinical outcomes. To tackle Alzheimer's disease on these aspects, the curcumin template was suitably modified and a small set of analogues was attained. In particular, derivative 1 turned out to be less toxic than curcumin. As evidenced by capillary electrophoresis and transmission electron microscopy studies, 1 proved to inhibit the formation of large toxic Aβ oligomers, by shifting the equilibrium towards smaller non-toxic assemblies and to limit the formation of insoluble fibrils. These findings were supported by molecular docking and steered molecular dynamics simulations which confirmed the superior capacity of 1 to bind Aβ structures of different complexity. Remarkably, 1 also showed in vitro anti-inflammatory and anti-oxidant properties. In summary, the curcumin-based analogue 1 emerged as multipotent compound worth to be further investigated and exploited in the Alzheimer's disease multi-target context.
Multiple multicomponent reactions reach an unparalleled level of connectivity, leading to highly complex adducts. Usually, only one type of transformation involving the same set of reactants takes place. However, in some occasions this is not the case. Selectivity issues then arise, and different scenarios are analyzed. The structural pattern of the reactants, the reaction design and the experimental conditions are the critical factors dictating selectivity in these processes.
The participation of reactants undergoing a polarity inversion along a multicomponent reaction allows the continuation of the transformation with productive domino processes. Thus, indole aldehydes in Groebke–Blackburn–Bienaymé reactions lead to an initial adduct which spontaneously triggers a series of events leading to the discovery of novel reaction pathways together with direct access to a variety of linked, fused, and bridged polyheterocyclic scaffolds. Indole 3‐ and 4‐carbaldehydes with suitable isocyanides and aminoazines afford fused adducts through oxidative Pictet–Spengler processes, whereas indole 2‐carbaldehyde yields linked indolocarbazoles under mild conditions, and a bridged macrocycle at high temperature. These novel structures are potent activators of the human aryl hydrocarbon receptor signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.