NUMB is a cell fate determinant, which, by asymmetrically partitioning at mitosis, controls cell fate choices by antagonising the activity of the plasma membrane receptor of the NOTCH family. NUMB is also an endocytic protein, and the NOTCH-NUMB counteraction has been linked to this function. There might be, however, additional functions of NUMB, as witnessed by its proposed role as a tumour suppressor in breast cancer. Here we describe a previously unknown function for human NUMB as a regulator of tumour protein p53 (also known as TP53). NUMB enters in a tricomplex with p53 and the E3 ubiquitin ligase HDM2 (also known as MDM2), thereby preventing ubiquitination and degradation of p53. This results in increased p53 protein levels and activity, and in regulation of p53-dependent phenotypes. In breast cancers there is frequent loss of NUMB expression. We show that, in primary breast tumour cells, this event causes decreased p53 levels and increased chemoresistance. In breast cancers, loss of NUMB expression causes increased activity of the receptor NOTCH. Thus, in these cancers, a single event-loss of NUMB expression-determines activation of an oncogene (NOTCH) and attenuation of the p53 tumour suppressor pathway. Biologically, this results in an aggressive tumour phenotype, as witnessed by findings that NUMB-defective breast tumours display poor prognosis. Our results uncover a previously unknown tumour suppressor circuitry.
Rab4 and Rab11 are small GTPases belonging to the Ras superfamily. They both function as regulators along the receptor recycling pathway. We have identified a novel 80-kDa protein that interacts specifically with the GTP-bound conformation of Rab4, and subsequent work has shown that it also interacts strongly with Rab11. We name this protein Rab coupling protein (RCP). RCP is predominantly membrane-bound and is expressed in all cell lines and tissues tested. It colocalizes with early endosomal markers including Rab4 and Rab11 as well as with the transferrin receptor. Overexpression of the carboxyl-terminal region of RCP, which contains the Rab4-and Rab11-interacting domain, results in a dramatic tubulation of the transferrin compartment. Furthermore, expression of this mutant causes a significant reduction in endosomal recycling without affecting ligand uptake or degradation in quantitative assays. RCP is a homologue of Rip11 and therefore belongs to the recently described Rab11-FIP family.
Spinocerebellar ataxia type 3 is a human neurodegenerative disease resulting from polyglutamine tract expansion. The affected protein, ataxin-3, which contains an N-terminal Josephin domain followed by tandem ubiquitin (Ub)-interacting motifs (UIMs) and a polyglutamine stretch, has been implicated in the function of the Ub proteasome system. NMR-based structural analysis has now revealed that the Josephin domain binds Ub and has a papain-like fold that is reminiscent of that of other deubiquitinases, despite primary sequence divergence but consistent with its deubiqutinating activity. Mutation of the catalytic Cys enhances the stability of a complex between ataxin-3 and polyubiquitinated proteins. This effect depends on the integrity of the UIM region, suggesting that the UIMs are bound to the substrate polyubiquitin during catalysis. We propose that ataxin-3 functions as a polyubiquitin chain-editing enzyme.ataxia ͉ polyglutamine ͉ ubiquitin ͉ ubiquitin interaction motif ͉ valosin-containing protein
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.