In recent years, machine learning (ML) has been a promising approach in the research of treatment outcome prediction in psychosis. In this study, we reviewed ML studies using different neuroimaging, neurophysiological, genetic, and clinical features to predict antipsychotic treatment outcomes in patients at different stages of schizophrenia. Literature available on PubMed until March 2022 was reviewed. Overall, 28 studies were included, among them 23 using a single-modality approach and 5 combining data from multiple modalities. The majority of included studies considered structural and functional neuroimaging biomarkers as predictive features used in ML models. Specifically, functional magnetic resonance imaging (fMRI) features contributed to antipsychotic treatment response prediction of psychosis with good accuracies. Additionally, several studies found that ML models based on clinical features might present adequate predictive ability. Importantly, by examining the additive effects of combining features, the predictive value might be improved by applying multimodal ML approaches. However, most of the included studies presented several limitations, such as small sample sizes and a lack of replication tests. Moreover, considerable clinical and analytical heterogeneity among included studies posed a challenge in synthesizing findings and generating robust overall conclusions. Despite the complexity and heterogeneity of methodology, prognostic features, clinical presentation, and treatment approaches, studies included in this review suggest that ML tools may have the potential to predict treatment outcomes of psychosis accurately. Future studies need to focus on refining feature characterization, validating prediction models, and evaluate their translation in real-world clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.