Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs such as the heart, brain and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load. In contrast, a recent clinical study found that stiffness precedes and may contribute to the development of hypertension, although the mechanisms contributing to hypertension are unknown. Here we report that in a diet-induced model of obesity, arterial stiffness, measured in vivo, develops within one month of the initiation of the diet and precedes the development of hypertension by five months. Diet-induced obese mice recapitulate the metabolic syndrome and are characterized by inflammation in visceral fat and aorta. Normalization of the metabolic state by weight loss returned arterial stiffness and blood pressure to normal. Our findings support the hypothesis that arterial stiffness is a cause, rather than a consequence of hypertension.
Heme oxygenase (HO) represents an intrinsic antiinflammatory system based on its ability to regulate leukocyte function and inhibit expression of proinflammatory cytokines. This anti-inflammatory function is linked to the inducible isoform HO-1; the role of the constitutive isoform HO-2 is unknown. The current study was undertaken to investigate the role of HO-2 in the regulation of the acute inflammatory and reparative response by using HO-2-null mice and well-established animal models of epithelial injury and antigen-induced peritonitis. Here we show that in vivo deletion of HO-2 disables execution of the acute inflammatory and reparative response after epithelial injury and leads to an exaggerated inflammatory response in antigen-induced peritonitis. HO-2 deletion was associated with impaired HO-1 induction, indicating that HO-2 is critical for HO-1 expression and that the subsequent failure to up-regulate the HO system may contribute to unresolved inflammation and the development of chronic inflammatory conditions. Indeed, supplementation with the HO bioactive product, biliverdin, rescued the acute inflammatory and reparative response in HO-2-null mice. Thus, HO-2 sets in place a basal tone of anti-inflammatory signals that may be a prerequisite for the ordered execution of an inflammatory and reparative response.
Background-Hypertensive patients with renovascular disease (RVD) may be exposed to increased oxidative stress, possibly related to activation of the renin-angiotensin system. Methods and Results-We measured the urinary excretion of 8-iso-prostaglandin (PG) F 2␣ and 11-dehydro-thromboxane (TX) B 2 as indexes of in vivo lipid peroxidation and platelet activation, respectively, in 25 patients with RVD, 25 patients with essential hypertension, and 25 healthy subjects. Plasma renin activity in peripheral and renal veins, angiotensin II in renal veins, cholesterol, glucose, triglycerides, homocysteine, and antioxidant vitamins A, C, and E were also determined. Patients were also studied 6 months after a technically successful angioplasty of the stenotic renal arteries. Urinary 8-iso-PGF 2␣ was significantly higher in patients with RVD (median, 305 pg/mg creatinine; range, 124 to 1224 pg/mg creatinine) than in patients with essential hypertension (median, 176 pg/mg creatinine; range, 48 to 384 pg/mg creatinine) or in healthy subjects (median, 123 pg/mg creatinine; range, 58 to 385 pg/mg creatinine). Urinary 11-dehydro-TXB 2 was also significantly higher in RVD patients compared with healthy subjects. In RVD patients, urinary 8-iso-PGF 2␣ correlated with 11-dehydro-TXB 2 (r s ϭ0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.