The recommended level of BK viraemia of 10(4) copies/mL is useful to identify patients at risk of BKVAN, although specificity and PPV increase by using a cut-off level of 1.6 x 10(4) copies/mL. BK replication may occur in the first 3 months post-transplantation and subsequently recede. Therefore, the temporal profile of BKV replication has to be accurately evaluated and occasionally elevated values should prompt a closer monitoring.
Purpose Does controlled ovarian stimulation (COS) and progesterone (P) luteal supplementation modify the vaginal and endometrial microbiota of women undergoing in vitro fertilization? Methods Fifteen women underwent microbiota analysis at two time points: during a mock transfer performed in the luteal phase of the cycle preceding COS, and at the time of fresh embryo transfer (ET). A vaginal swab and the distal extremity of the ET catheter tip were analyzed using next-generation 16SrRNA gene sequencing. Heterogeneity of the bacterial microbiota was assessed according to both the Bray-Curtis similarity index and the Shannon diversity index. Results Lactobacillus was the most prevalent genus in the vaginal samples, although its relative proportion was reduced by COS plus P supplementation (71.5 ± 40.6% vs. 61.1 ± 44.2%). In the vagina, an increase in pathogenic species was observed, involving Prevotella (3.5 ± 8.9% vs. 12.0 ± 19.4%), and Escherichia coli-Shigella spp. (1.4 ± 5.6% vs. 2.0 ± 7.8%). In the endometrium, the proportion of Lactobacilli slightly decreased (27.4 ± 34.5% vs. 25.0 ± 29.9%); differently, both Prevotella and Atopobium increased (3.4 ± 9.5% vs. 4.7 ± 7.4% and 0.7 ± 1.5% vs. 5.8 ± 12.0%). In both sites, biodiversity was greater after COS (p < 0.05), particularly in the endometrial microbiota, as confirmed by Bray-Curtis analysis of the phylogenetic distance among bacteria genera. Bray-Curtis analysis confirmed significant differences also for the paired endometrium-vagina samples at each time point. Conclusions Our findings suggest that COS and P supplementation significantly change the composition of vaginal and endometrial microbiota. The greater instability could affect both endometrial receptivity and placentation. If our findings are confirmed, they may provide a further reason to encourage the freeze-all strategy.
Currently, no consensus has been reached on the optimal blood compartment to be used for surveillance of cytomegalovirus (CMV) and Epstein-Barr virus (EBV) DNAemia. Although several comparative studies have been performed correlating CMV and EBV DNA loads in whole blood (WB) versus plasma, to our knowledge, no studies to date have analyzed the kinetics of both viruses in the 2 blood compartments. In this retrospective noninterventional multicenter cohort study, the kinetics of CMV and EBV DNA in 121 hematopoietic stem cell transplantation (HSCT) recipients were investigated by analyzing in parallel 569 and 351 paired samples from 80 and 58 sequential episodes of CMV and EBV DNAemia, respectively. Unlike previous studies, this study used a single automated molecular method that was CE-marked and Food and Drug Administrationapproved for use in quantifying CMV and EBV DNA in both plasma and WB. Furthermore, the complete viral replication kinetics of all episodes (including both the ascending and the descending phases of the active infection) was examined in each patient. The previously observed overall correlation between CMV DNA levels in WB and plasma was confirmed (Spearman's ρ = .85; P < .001). However, although WB and plasma CMV DNAemia reached peak levels simultaneously, in the ascending phase, the median CMV DNA levels in plasma were approximately 1 log10 lower than WB. Furthermore, in patients who received preemptive therapy, CMV DNA showed a delayed decrease in plasma compared with WB. A lower correlation between EBV DNA levels in plasma versus WB was found (Spearman's ρ = .61; P < .001). EBV DNA kinetics was not consistent in the 2 blood compartments, mostly due to the lower positivity in plasma. Indeed, in 19% of episodes, EBV DNA was negative at the time of the EBV DNA peak in WB. Our results suggest a preferential use of WB for surveillance of CMV and EBV infection in HSCT recipients.
Immunological data for CMV could be used in the clinical evaluation and decision-making process, in combination with virological monitoring, in kidney transplant recipients.
Cat scratch disease (CSD) is an infectious disease caused by Bartonella henselae, usually characterized by self-limiting regional lymphadenopathy and fever. Given the low clinical diagnostic sensitivity and specificity of conventional anti-B. henselae indirect immunofluorescence assays (IFAs), real-time polymerase chain reaction (PCR)-based detection of B. henselae is now being proposed as a more sensitive tool to diagnose CSD. Thus, here we have assessed the efficacy of real-time PCR in detecting B. henselae in different specimens from patients with suspected CSD and compared it to that of IFA. From March 2011 to May 2016, at the Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy, 115 clinical specimens (56 aspirated pus, 39 fresh lymph node biopsies, and 20 whole blood samples) and 99 sera from 115 patients with suspected CSD (62 females and 53 males between the ages of 3 months and 68 years) were analyzed by both real-time PCR, used in a qualitative way, and IFA (IgM and IgG) for the presence of B. henselae. For 16 patients, serological results were not available due to a clinical decision not to request the test. B. henselae DNA positivity was detected by real-time PCR in 37.39% of patients, while 62.61% of them were negative. Thus, patients were divided into two groups: real-time PCR+ (n = 43) and real-time PCR- (n = 72). Real-time PCR screening of whole blood, biopsies, and aspirated pus revealed B. henselae positivity in 40%, 38.46%, and 35.71% of patients, respectively. When we analyzed samples by IFA, we found the presence of B. henselae in 28 out of 99 (28.28%) patients, of which 11 (11.11%) belonged to the real-time PCR+ group and 17 (17.17%) to the real-time PCR- group. Among the 71 seronegative subjects, 16 (16.16%) were found positive for B. henselae by real-time PCR. Thus, by combining the results of both assays, we were able to increase the percentage of B. henselae positive specimens from 27.27% (real-time PCR) or 28.28% (IFA) to 44.44% (real-time PCR+IFA). Altogether, these findings indicate that the early detection of B. henselae in patients with suspicious CSD through combined real-time PCR and serological analyses can lead to a more accurate diagnosis of CSD, thereby allowing prompt and appropriate disease management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.