Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma.
Background and objectiveRespiratory viral infections are a major cause of asthma exacerbations. Neutrophils accumulate in the airways and the mechanisms that link neutrophilic inflammation, viral infections and exacerbations are unclear. This study aims to investigate anti‐viral responses in neutrophils from patients with and without asthma and to investigate if neutrophils can be directly activated by respiratory viruses.MethodsNeutrophils from peripheral blood from asthmatic and non‐asthmatic individuals were isolated and stimulated with lipopolysaccharide (LPS) (1 μg/mL), f‐met‐leu‐phe (fMLP) (100 nM), imiquimod (3 μg/mL), R848 (1.5 μg/mL), poly I:C (10 μg/mL), RV16 (multiplicity of infection (MOI)1), respiratory syncytial virus (RSV) (MOI1) or influenza virus (MOI1). Cell‐free supernatants were collected after 1 h of neutrophil elastase (NE) and matrix metalloproteinase (MMP)‐9 release, or after 24 h for CXCL8 release.Results LPS, fMLP, imiquimod and R848 stimulated the release of CXCL8, NE and MMP‐9 whereas poly I:C selectively induced CXCL8 release only. R848‐induced CXCL8 release was enhanced in neutrophils from asthmatics compared with non‐asthmatic cells (P < 0.01). RSV triggered the release of CXCL8 and NE from neutrophils, whereas RV16 or influenza had no effect.ConclusionNeutrophils release CXCL8, NE and MMP‐9 in response to viral surrogates with R848‐induced CXCL8 release being specifically enhanced in asthmatic neutrophils. Toll‐like receptor (TLR7/8) dysregulation may play a role in neutrophilic inflammation in viral‐induced exacerbations.
The bioactive sphingolipid sphingosine 1-phosphate (S1P) is found in increased amounts in the airways of asthmatics. S1P can regulate airway smooth muscle functions associated with asthmatic inflammation and remodeling, including cytokine secretion. To date however, whether S1P induces secretion of an important chemokine responsible for neutrophilia in airway inflammation – IL-8 – was unexplored. The aim of this study was to investigate whether S1P induces IL-8 gene expression and secretion to enhance neutrophil chemotaxis in vitro, as well as examine the molecular mechanisms responsible for repression by the corticosteroid dexamethasone. We show that S1P upregulates IL-8 secretion from ASM cells and enhance neutrophil chemotaxis in vitro. The corticosteroid dexamethasone significantly represses IL-8 mRNA expression and protein secretion in a concentration- and time-dependent manner. Additionally, we reveal that S1P-induced IL-8 secretion is p38 MAPK and ERK-dependent and that these key phosphoproteins act on the downstream effector mitogen- and stress-activated kinase 1 (MSK1) to control secretion of the neutrophil chemoattractant cytokine IL-8. The functional relevance of this in vitro data was demonstrated by neutrophil chemotaxis assays where S1P-induced effects can be significantly attenuated by pretreatment with dexamethasone, pharmacological inhibition of p38 MAPK- or ERK-mediated pathways, or by knocking down MSK-1 with siRNA. Taken together, our study reveals the molecular pathways responsible for IL-8 secretion from ASM cells in response to S1P and indicates ways in which the impact on IL-8-driven neutrophilia may be lessened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.