The study of radiomics in BC patients is a new and emerging translational research topic. Radiomics in BC is frequently done to potentially improve diagnosis and characterization, mostly using MRI. Substantial quality limitations were found; high-quality prospective and reproducible studies are needed to further potential application.
BackgroundNeuroblastoma is the most common, pediatric, extra-cranial, malignant solid tumor. Despite multimodal therapeutic protocols, outcome for children with a high-risk clinical phenotype remains poor, with long-term survival still less than 40%. Hereby, we evaluated the potential of non-coding RNA expression to predict outcome in high-risk, stage 4 neuroblastoma.MethodsWe analyzed expression of 481 Ultra Conserved Regions (UCRs) by reverse transcription-quantitative real-time PCR and of 723 microRNAs by microarrays in 34 high-risk, stage 4 neuroblastoma patients.ResultsFirst, the comparison of 8 short- versus 12 long-term survivors showed that 54 UCRs were significantly (P < 0.0491) over-expressed in the former group. For 48 Ultra Conserved Region (UCRs) the expression levels above the cut-off values defined by ROC curves were strongly associated with good-outcome (OS: 0.0001
Background
To investigate whether quantitative radiomic features extracted from digital breast tomosynthesis (DBT) are associated with Ki-67 expression of breast cancer.
Materials and methods
This is a prospective ethically approved study of 70 women diagnosed with invasive breast cancer in 2018, including 40 low Ki-67 expression (Ki-67 proliferation index <14%) cases and 30 high Ki-67 expression (Ki-67 proliferation index ≥ 14%) cases. A set of 106 quantitative radiomic features, including morphological, grey/scale statistics, and texture features, were extracted from DBT images. After applying least absolute shrinkage and selection operator (LASSO) method to select the most predictive features set for the classifiers, low
versus
high Ki-67 expression was evaluated by the area under the curve (AUC) at receiver operating characteristic analysis. Correlation coefficient was calculated for the most significant features.
Results
A combination of five features yielded AUC of up to 0.698. The five most predictive features (sphericity, autocorrelation, interquartile range, robust mean absolute deviation, and short-run high grey-level emphasis) showed a statistical significance (
p
≤ 0.001) in the classification. Thirty-four features were significantly (
p
≤ 0.001) correlated with Ki-67, and five of these had a correlation coefficient of > 0.5.
Conclusion
The present study showed that quantitative radiomic imaging features of breast tumour extracted from DBT images are associated with breast cancer Ki-67 expression. Larger studies are needed in order to further evaluate these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.