In recent years, in castration resistant prostate cancer (CRPC), several new drugs have been approved that prolong overall survival, including enzalutamide and abiraterone, two new-generation hormonal therapies. Despite the demonstrated benefit of these agents, not all patients with CRPC are responsive to treatment, the gain in median progression-free survival with these therapies compared to standard of care is, rather disappointingly, still less than six months and the appearance of acquired resistance is almost universal. Approximately one third of patients treated with abiraterone and 25% of those treated with enzalutamide show primary resistance to these agents. Even if the mechanisms of resistance to these agents are not fully defined, many hypotheses are emerging, including systemic and intratumoral androgen biosynthesis up-regulation, androgen receptor (AR) gene mutations and amplifications, alteration of pathways involved in cross-talk with AR signaling, glucocorticoid receptor overexpression, neuroendocrine differentiation, immune system deregulation and others. The aim of this paper is to review currently available data about mechanisms of resistance to abiraterone and enzalutamide, and to discuss how these mechanisms could be potentially overcome through novel therapeutic agents.
We synthesized the evidence available about the early administration of docetaxel in patients starting hormonal treatment for metastatic prostate cancer. Based on the results of this meta-analysis, we believe the combination of chemotherapy and hormonal treatment should be considered in fit patients.
The new-generation hormonal agent enzalutamide has been approved for the treatment of metastatic castration-resistant prostate cancer (CRPC), in both post- and predocetaxel setting, due to the significant improvement in overall survival. More recently, enzalutamide also showed impressive results in the treatment of men with nonmetastatic CRPC. Unfortunately, not all patients with CRPC are responsive to enzalutamide, and even in responders, benefits are limited by the development of drug resistance. Adaptive resistance of metastatic prostate cancer to enzalutamide treatment can be due to the activation of both androgen receptor (AR)-dependent pathways (expression of constitutively active AR splice variants, AR point mutations, gene amplification and overexpression) and mechanisms independent of AR signaling pathway (altered steroidogenesis, upregulation of the glucocorticoid receptor, epithelial–mesenchymal transition, neuroendocrine transformation, autophagy and activation of the immune system). In this review, we focus on resistance mechanisms to enzalutamide, exploring how we could overcome them through novel therapeutic options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.