The formation of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms drive diversity in organization? We use generative network modeling to provide a computational framework for understanding neurodevelopmental diversity. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over time. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity in neurodevelopment, capable of integrating different levels of analysis—from genes to cognition.
HighlightsChildren's learning abilities were associated with WM.The link with verbal WM was stronger for reading than mathematics.The majority of children with learning difficulties had WM deficits.
A randomized controlled trial compared complex span and n-back training regimes to investigate the generality of training benefits across materials and paradigms. The memory items and training intensities were equated across programs, providing the first like-with-like comparison of transfer in these two widely used training paradigms. The stimuli in transfer tests of verbal and visuo-spatial n-back and complex span differed from the trained tasks, but were matched across the untrained paradigms. Participants were randomly assigned to one of three training groups: complex span training, n-back training, or no training. Pre- to- post training changes were observed for untrained n-back tasks following n-back training. Following complex span training there was equivocal evidence for improvements on a verbal complex span task, but no evidence for changes on an untrained visuo-spatial complex span activity. Relative to a no intervention group, the evidence supported no change on an untrained verbal complex span task following either n-back or complex span training. Equivocal evidence was found for improvements on visuo-spatial complex span and verbal and visuo-spatial n-back tasks following both training regimes. Evidence for selective transfer (comparing the two active training groups) was only found for an untrained visuo-spatial n-back task following n-back training. There was no evidence for cross-paradigm transfer. Thus transfer is constrained by working memory paradigm and the nature of individual processes executed within complex span tasks. However, within-paradigm transfer can occur when the change is limited to stimulus category, at least for n-back.
A randomized controlled trial compared complex span and n-back training regimes to investigate the generality of training benefits across materials and paradigms. The memory items and training intensities were equated across programs, providing the first like-with-like comparison of transfer in these two widely-used training paradigms. The stimuli in transfer tests of verbal and visuo-spatial n-back and complex span differed from the trained tasks, but were matched across the untrained paradigms. Pre-to-post changes were observed for untrained n-back tasks following n-back training. Following complex span training there was equivocal evidence for improvements on a verbal complex span task, but no evidence for changes on an untrained visuo-spatial complex span activity. Relative to a no intervention group, the evidence supported no change on an untrained verbal complex span task following either n-back or complex span training. Equivocal evidence was found for improvements on visuo-spatial complex span and verbal and visuo-spatial n-back tasks following both training regimes. Evidence for selective transfer (comparing the two active training groups) was only found for an untrained visuo-spatial n-back task following n-back training. There was no evidence for cross-paradigm transfer. Thus transfer is constrained by working memory paradigm and the nature of individual processes executed within complex span tasks. However, within-paradigm transfer can occur when the change is limited to stimulus category, at least for n-back.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.