Currently, distributed cyber-physical systems (CPS) rely upon embedded real-time systems, which can guarantee compliance with time constraints. CPS are increasingly required to act and interact with one another in dynamic environments. In the last decades, the Belief-Desire-Intention (BDI) architecture has proven to be ideal for developing agents with flexible behavior. However, current BDI models can only reason about time and not in time. This lack prevents BDI agents from being adopted in designing CPS, and particularly in safety-critical applications. This paper proposes a revision of the BDI model by integrating real-time mechanisms into the reasoning cycle of the agent. By doing so, the BDI agent can make decisions and execute plans ensuring compliance with strict timing constraints also in dynamic environments, where unpredictable events may occur.
In the race for automation, distributed systems are required to perform increasingly complex reasoning to deal with dynamic tasks, often not controlled by humans. On the one hand, systems dealing with strict-timing constraints in safety-critical applications mainly focused on predictability, leaving little room for complex planning and decisionmaking processes. Indeed, real-time techniques are very efficient in predetermined, constrained, and controlled scenarios. Nevertheless, they lack the necessary flexibility to operate in evolving settings, where the software needs to adapt to the changes of the environment. On the other hand, Intelligent Systems (IS) increasingly adopted Machine Learning (ML) techniques (e.g., subsymbolic predictors such as Neural Networks). The seminal application of those IS started in zero-risk domains producing revolutionary results. However, the ever-increasing exploitation of ML-based approaches generated opaque systems, which are nowadays no longer socially acceptable-calling for eXplainable AI (XAI). Such a problem is exacerbated when IS tend to approach safety-critical scenarios. This paper highlights the need for on-time explainability. In particular, it proposes to embrace the Real-Time Beliefs Desires Intentions (RT-BDI) framework as an enabler of eXplainable Multi-Agent Systems (XMAS) in time-critical XAI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.