A spatially developing turbulent boundary layer subject to a space- and time-dependent pressure gradient is analysed via large-eddy simulation. The unsteadiness is prescribed by imposing an oscillating suction–blowing velocity profile at the top boundary of the computational domain. The alternating favourable and adverse pressure gradients cause the flow to separate and reattach to the wall periodically. A range of reduced frequencies $k$ was investigated, spanning from a very rapid flutter-like motion to a slow, quasi-steady flapping. The Reynolds number based on the boundary-layer displacement thickness $\delta _o^{*}$ at the inflow plane is $Re_*=1000$ . Both time- and phase-averaged fields are analysed and results are compared with steady conditions. The reduced frequency $k$ has a significant effect on the transient flow-separation process. For high $k$ the separation bubble does not grow as thick as in the corresponding steady case, but the length of the bubble remains comparable; hysteresis is observed in the near-wall region. As $k$ is reduced, a threshold is met at which the separation bubble grows in the wall-normal direction. However, the length of the bubble is significantly reduced again when compared with the steady case. At this frequency, the region of slow-moving fluid generated by the flow reversal is advected downstream, causing a decorrelation between the forcing (the imposed free-stream velocity) and the velocity and pressure downstream of the separation bubble. Moreover, hysteresis effects are shifted away from the wall. At the lowest frequency a quasi-steady solution is approached; however, transient effects are still present in the backflow region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.