We present SubjectivITA: the first Italian corpus for subjectivity detection on news articles, with annotations at sentence and document level. Our corpus consists of 103 articles extracted from online newspapers, amounting to 1,841 sentences. We also define baselines for sentence-and document-level subjectivity detection using transformerbased and statistical classifiers. Our results suggest that sentence-level subjectivity annotations may often be sufficient to classify the whole document.
AMICA is an argument mining-based search engine, specifically designed for the analysis of scientific literature related to Covid-19. AMICA retrieves scientific papers based on matching keywords and ranks the results based on the papers' argumentative content. An experimental evaluation conducted on a case study in collaboration with the Italian National Institute of Health shows that the AMICA ranking agrees with expert opinion, as well as, importantly, with the impartial quality criteria indicated by Cochrane Systematic Reviews.
BackgroundThe COVID-19 pandemic prompted the scientific community to share timely evidence, also in the form of pre-printed papers, not peer reviewed yet.PurposeTo develop an artificial intelligence system for the analysis of the scientific literature by leveraging on recent developments in the field of Argument Mining.MethodologyScientific quality criteria were borrowed from two selected Cochrane systematic reviews. Four independent reviewers gave a blind evaluation on a 1–5 scale to 40 papers for each review. These scores were matched with the automatic analysis performed by an AM system named MARGOT, which detected claims and supporting evidence for the cited papers. Outcomes were evaluated with inter-rater indices (Cohen's Kappa, Krippendorff's Alpha, s* statistics).ResultsMARGOT performs differently on the two selected Cochrane reviews: the inter-rater indices show a fair-to-moderate agreement of the most relevant MARGOT metrics both with Cochrane and the skilled interval scores, with larger values for one of the two reviews.Discussion and conclusionsThe noted discrepancy could rely on a limitation of the MARGOT system that can be improved; yet, the level of agreement between human reviewers also suggests a different complexity between the two reviews in debating controversial arguments. These preliminary results encourage to expand and deepen the investigation to other topics and a larger number of highly specialized reviewers, to reduce uncertainty in the evaluation process, thus supporting the retraining of AM systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.