Europium-doped hydroxyapatite Ca10(PO4)6(OH)2 (3% mol) powders were synthesized by an optimized chemical precipitation method at 25 °C, followed by drying at 120 °C and calcination at 450 °C and 900 °C. The obtained nanosized crystallite samples were investigated by means of a combination of inductively coupled plasma (ICP) spectroscopy, powder X-ray diffraction (PXRD), Fourier Transform Infrared (FTIR), Raman and photoluminescence (PL) spectroscopies. The Rietveld refinement in the hexagonal P63/m space group showed europium ordered at the Ca2 site at high temperature (900 °C), and at the Ca1 site for lower temperatures (120 °C and 450 °C). FTIR and Raman spectra showed slight band shifts and minor modifications of the (PO4) bands with increasing annealing temperature. PL spectra and decay curves revealed significant luminescence emission for the phase obtained at 900 °C and highlighted the migration of Eu from the Ca1 to Ca2 site as a result of increasing calcinating temperature.
Background and aims. SARS-CoV-2-infected patients can experience long-lasting symptoms even after the resolution of the acute infection. This condition, defined as Long COVID, is now recognized as a public health priority and its negative impact on the quality of life of the patients could be more relevant in individuals with debilitating pathologies. We here evaluated the frequency of Long COVID in patients with inflammatory bowel diseases (IBD). Methods. IBD patients afferent for scheduled visits to our tertiary referral center at the Tor Vergata University Hospital, Rome, were recruited from 7 September to 22 October 2021. During the visits, patients were investigated about previous COVID-19 infection and the possible development of Long COVID. Results. Fifty-three out of 528 IBD patients (10%) have had a SARS-CoV-2 infection. Of these, 21 patients (40%) developed Long COVID, and asthenia was the more frequent symptom as it occurred in nearly two-thirds of patients. Patients with Long COVID were more frequently females, while other clinical and demographic characteristics did not differ between patients with Long COVID and those without Long COVID. In particular, the IBD relapses occurred with the same frequency in the two groups. Conclusions. Long COVID appears to be common in IBD patients even though it does not influence the IBD course.
Strontium-substituted Ca10(PO4)6(OH)2 hydroxyapatite (HAp) powders, with Sr wt% concentrations of 2.5, 5.6 and 10%, were prepared by a solid-state synthesis method. The chemical composition of the samples was accurately evaluated by using inductively coupled plasma (ICP) spectroscopy. The morphology of the samples was analyzed via optical microscopy, while structural characterization was achieved through powder X-ray diffraction (PXRD) and infrared (FTIR) and Raman spectroscopy. The PXRD structural characterization showed the presence of the Sr dopant in the Ca1 structural site for HAp with a lower Sr concentration and in the Ca2 site for the sample with a higher Sr concentration. FTIR and Raman spectra showed slight band shifts and minor modifications of the (PO4) bands with increasing the Sr doping rate.
Stony monuments must continuously be safeguarded from damage caused over time, in particular from the detrimental effects of weathering. One of the new environmentally-friendly (nano) materials for stone reinforcement, particularly suitable for marble and calcareous (limestone, sandstone) artifacts, is Ca10(PO4)6(OH)2 hydroxyapatite (HAp), which has a considerably lower dissolution rate and solubility compared to CaCO3 calcite (the building block of marble materials): thus, HAp has been proposed for the protection of calcareous monuments against acidic rain corrosion. Promising results have been obtained, but further optimization is necessary as the treated layer is often incomplete, cracked and/or porous. Several parameters need to be optimized, in this way a homogeneous layer can be obtained, and consequently the formation of metastable can be avoided, soluble phases instead of HAp. These include: the pH of the starting solution; the effect of organic and inorganic additions in particular, that of ethanol, which is known to adsorb calcite, thus possibly favoring the growth of the HAp layer. The formation of HAp nanoparticles and their application on stony substrates has been investigated by means of a multi-methodological approach based on scanning electron microscopy, x-ray diffraction, small- and/or wide-angle x-ray scattering, Fourier-transform infrared spectroscopy, and finally, in situ measurements of laser-induced breakdown spectroscopy and acid attack preliminary tests on stony substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.