The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z+(G) is introduced, and shown to be equal to |G| − OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hemitian positive semidefinite minimum rank is presented.
Abstract. Tree-width, and variants that restrict the allowable tree decompositions, play an important role in the study of graph algorithms and have application to computer science. The zero forcing number is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by a graph. We establish relationships between these parameters, including several Colin de Verdière type parameters, and introduce numerous variations, including the minor monotone floors and ceilings of some of these parameters. This leads to new graph parameters and to new characterizations of existing graph parameters. In particular, tree-width, largeur d'arborescence, path-width, and proper path-width are each characterized in terms of a minor monotone floor of a certain zero forcing parameter defined by a color change rule.
For a given undirected graph G, the minimum rank of G is defined to be the smallest possible rank over all real symmetric matrices A whose (i, j)th entry is non-zero whenever i / =j and {i, j} is an edge in G. The path cover number of G is the minimum number of vertexdisjoint paths occurring as induced subgraphs of G that cover all the vertices of G. For trees, the relationship between minimum rank and path cover number is completely understood. However, for non-trees only sporadic results are known. We derive formulae for the minimum rank and path cover number for graphs obtained from edge-sums, and formulae for minimum rank of vertex sums of graphs. In addition we examine previously identified special types of vertices and attempt to unify the theory behind them.
Abstract. For a given undirected graph G, the minimum rank of G is defined to be the smallest possible rank over all real symmetric matrices A whose (i, j)th entry is nonzero whenever i = j and {i, j} is an edge in G. Building upon recent work involving maximal coranks (or nullities) of certain symmetric matrices associated with a graph, we introduce a new parameter ξ which is also based on the corank of a different but related class of symmetric matrices. For this new parameter we verify some properties analogous to the ones possessed by the existing parameters and, in addition, we attempt to apply these properties associated with ξ, to learn more about the minimum rank of graphs -our original motivation.
Abstract. The minimum rank of a directed graph Γ is defined to be the smallest possible rank over all real matrices whose ijth entry is nonzero whenever (i, j) is an arc in Γ and is zero otherwise. The symmetric minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i = j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. Maximum nullity is equal to the difference between the order of the graph and minimum rank in either case. Definitions of various graph parameters used to bound symmetric maximum nullity, including path cover number and zero forcing number, are extended to digraphs, and additional parameters related to minimum rank are introduced. It is shown that for directed trees, maximum nullity, path cover number, and zero forcing number are equal, providing a method to compute minimum rank for directed trees. It is shown that the minimum rank problem for any given digraph or zero-nonzero pattern may be converted into a symmetric minimum rank problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.