The growing interest of the industry production in wearable robots for assistance and rehabilitation purposes opens the challenge for developing intuitive and natural control strategies. Myoelectric control, or myo-control, which consists in decoding the human motor intent from muscular activity and its mapping into control outputs, represents a natural way to establish an intimate human-machine connection. In this field, model based myo-control schemes (e.g., EMG-driven neuromusculoskeletal models, NMS) represent a valid solution for estimating the moments of the human joints. However, a model optimization is needed to adjust the model's parameters to a specific subject and most of the optimization approaches presented in literature consider complex NMS models that are unsuitable for being used in a control paradigm since they suffer from long-lasting setup and optimization phases. In this work we present a minimal NMS model for predicting the elbow and shoulder torques and we compare two optimization approaches: a linear optimization method (LO) and a non-linear method based on a genetic algorithm (GA). The LO optimizes only one parameter per muscle, whereas the GA-based approach performs a deep customization of the muscle model, adjusting 12 parameters per muscle. EMG and force data have been collected from 7 healthy subjects performing a set of exercises with an arm exoskeleton. Although both optimization methods substantially improved the performance of the raw model, the findings of the study suggest that the LO might be beneficial with respect to GA as the latter is much more computationally heavy and leads to minimal improvements with respect to the former. From the comparison between the two considered joints, it emerged also that the more accurate the NMS model is, the more effective a complex optimization procedure could be. Overall, the two optimized NMS models were able to predict the shoulder and elbow moments with a low error, thus demonstrating the potentiality for being used in an admittance-based myo-control scheme. Thanks to the low computational cost and to the short setup phase required for wearing and calibrating the system, obtained results are promising for being introduced in industrial or rehabilitation real time scenarios.
Camera calibration is a crucial step for computer vision in many applications. For example, adequate calibration is required in infrared thermography inside gas turbines for blade temperature measurements, for associating each pixel with the corresponding point on the blade 3D model. The blade has to be used as the calibration frame, but it is always only partially visible, and thus, there are few control points. We propose and test a method that exploits the anisotropic uncertainty of the control points and improves the calibration in conditions where the number of control points is limited. Assuming a bivariate Gaussian 2D distribution of the position error of each control point, we set uncertainty areas of control points’ position, which are ellipses (with specific axis lengths and rotations) within which the control points are supposed to be. We use these ellipses to set a weight matrix to be used in a weighted Direct Linear Transformation (wDLT). We present the mathematical formalism for this modified calibration algorithm, and we apply it to calibrate a camera from a picture of a well known object in different situations, comparing its performance to the standard DLT method, showing that the wDLT algorithm provides a more robust and precise solution. We finally discuss the quantitative improvements of the algorithm by varying the modules of random deviations in control points’ positions and with partial occlusion of the object.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.