Objectives: Chronic and heavy ketamine use has been associated with persistent neurocognitive impairment and structural brain abnormalities. Blood levels of neurofilament light chain (NFL) was recently proposed as a measure of axonal integrity in several neuropsychiatric disorders. We aimed to characterise the axonal neurotoxicity of chronic ketamine use and its relationship to relevant clinical outcomes. Methods: We enrolled 65 treatment-seeking ketamine-dependent patients (55 males and 10 females) and 60 healthy controls (51 males and 9 females). Blood NFL levels measured by single molecule array (SiMoA) immunoassay. We compared NFL levels between groups and used regression analyses to identify clinical variables related to NFL levels. Results: Ketamine-dependent patients had significantly higher NFL levels compared to controls (p < 0.001). A multivariate regression showed that age (p < 0.05) and lifetime history of major depressive disorder (MDD) (p < 0.01) predicted high NFL blood levels in patients. Subsequent group comparisons showed that specifically ketamine-dependent patients with a lifetime history of MDD had significantly increased NFL levels than those without (p < 0.05). Conclusions: These results suggest substantial neuroaxonal alterations following chronic and heavy ketamine use. The pronounced increase of NFL levels in the MDD subgroup warrants further investigation of a potential neuroaxonal vulnerability of depressed patients to ketamine.
Background
3,4-Methylenedioxymethamphetamine (MDMA) is a widely used recreational substance inducing acute release of serotonin. Previous studies in chronic MDMA users demonstrated selective adaptations in the serotonin system, which were assumed to be associated with cognitive deficits. However, serotonin functions are strongly entangled with glutamate as well as γ-aminobutyric acid (GABA) neurotransmission and studies in MDMA-exposed rats show long-term adaptations in glutamatergic and GABAergic signaling.
Methods
We used proton magnetic resonance spectroscopy (MRS) to measure the glutamate-glutamine complex (GLX) and GABA concentrations in the left striatum and medial anterior cingulate cortex (ACC) of 44 chronic but recently abstinent MDMA users and 42 MDMA-naïve healthy controls. While the Mescher-Garwood point-resolved-spectroscopy sequence (MEGA-PRESS) is best suited to quantify GABA, recent studies reported poor agreement between conventional short-echo-time PRESS and MEGA-PRESS for GLX measures. Here, we applied both sequences to assess their agreement and potential confounders underlying the diverging results.
Results
Chronic MDMA users showed elevated GLX levels in the striatum, but not the ACC. Regarding GABA, we found no group difference in either region, although a negative association with MDMA use frequency was observed in the striatum. Overall, GLX measures from MEGA-PRESS, with its longer echo time, appeared to be less confounded by macromolecule signal than the short-echo-time PRESS and thus provided more robust results.
Conclusion
Our findings suggest that MDMA use affects not only serotonin, but also striatal GLX and GABA concentrations. These insights may offer new mechanistic explanations for cognitive deficits (e.g., impaired impulse control) observed in MDMA users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.