To generate a vaccine to protect against a variety of human pathogenic fungi, we conjugated laminarin (Lam), a well-characterized but poorly immunogenic β-glucan preparation from the brown alga Laminaria digitata, with the diphtheria toxoid CRM197, a carrier protein used in some glyco-conjugate bacterial vaccines. This Lam-CRM conjugate proved to be immunogenic and protective as immunoprophylactic vaccine against both systemic and mucosal (vaginal) infections by Candida albicans. Protection probably was mediated by anti-β-glucan antibodies as demonstrated by passive transfer of protection to naive mice by the whole immune serum, the immune vaginal fluid, and the affinity-purified anti-β-glucan IgG fractions, as well as by administration of a β-glucan–directed IgG2b mAb. Passive protection was prevented by adsorption of antibodies on Candida cells or β-glucan particles before transfer. Anti-β-glucan antibodies bound to C. albicans hyphae and inhibited their growth in vitro in the absence of immune-effector cells. Remarkably, Lam-CRM–vaccinated mice also were protected from a lethal challenge with conidia of Aspergillus fumigatus, and their serum also bound to and markedly inhibited the growth of A. fumigatus hyphae. Thus, this novel conjugate vaccine can efficiently immunize and protect against two major fungal pathogens by mechanisms that may include direct antifungal properties of anti-β-glucan antibodies.
GNA2132 is a
Neisseria meningitidis
antigen of unknown function, discovered by reverse vaccinology, which has been shown to induce bactericidal antibodies in animal models. Here we show that this antigen induces protective immunity in humans and it is recognized by sera of patients after meningococcal disease. The protein binds heparin in vitro through an Arg-rich region and this property correlates with increased survival of the unencapsulated bacterium in human serum. Furthermore, two proteases, the meningococcal NalP and human lactoferrin, cleave the protein upstream and downstream from the Arg-rich region, respectively. We conclude that GNA2132 is an important protective antigen of
N. meningitidis
and we propose to rename it,
N
eisserial
H
eparin
B
inding
A
ntigen (NHBA).
The immunogenicity of weak T-independent antigens can be increased in quantity and quality by conjugation to protein carriers, which provide T-cell help. Glycoconjugate vaccines are among the safest and most efficacious vaccines developed so far. Various conjugation procedures and carrier proteins can be used. Many variables impact on the immunogenicity of conjugate vaccines and a tight control through physicochemical tests is important to ensure manufacturing and clinical consistency. New and challenging targets for conjugate vaccines are represented by cancer and other non-infectious diseases.
An anti-candidiasis glycoconjugate vaccine was prepared via a tyrosine-selective alkynylation and a click chemistry mediated glycoconjugation sequence. It features a well-defined glycan, protein carrier, and connectivity. The construct, although with significantly lower carbohydrate loading and a shorter b-(1,3) glucan chain than the well-established anti-candidiasis vaccine derived from the random conjugation of laminarin at lysines, elicited a comparable level of specific IgG antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.