Automatic recognition of different tissue types in histological images is an essential part in the digital pathology toolbox. Texture analysis is commonly used to address this problem; mainly in the context of estimating the tumour/stroma ratio on histological samples. However, although histological images typically contain more than two tissue types, only few studies have addressed the multi-class problem. For colorectal cancer, one of the most prevalent tumour types, there are in fact no published results on multiclass texture separation. In this paper we present a new dataset of 5,000 histological images of human colorectal cancer including eight different types of tissue. We used this set to assess the classification performance of a wide range of texture descriptors and classifiers. As a result, we found an optimal classification strategy that markedly outperformed traditional methods, improving the state of the art for tumour-stroma separation from 96.9% to 98.6% accuracy and setting a new standard for multiclass tissue separation (87.4% accuracy for eight classes). We make our dataset of histological images publicly available under a Creative Commons license and encourage other researchers to use it as a benchmark for their studies.
Color texture classification has been an area of intensive research activity. From the very onset, approaches to combining color and texture have been the subject of much discussion, and in particular, whether they should be considered joint or separately. We present a comprehensive comparison of the most prominent approaches both from a theoretical and experimental standpoint. The main contributions of our work are: (i) the establishment of a generic and extensible framework to classify methods for color texture classification on a mathematical basis, and (ii) a theoretical and experimental comparison of the most salient existing methods. Starting from an extensive set of experiments based on the Outex dataset, we highlight those texture descriptors that provide good accuracy along with low dimensionality. The results suggest that separate color and texture processing is the best practice when one seeks for optimal compromise between accuracy and limited number of features. We believe that our work may serve as a guide for those who need to choose the appropriate method for a specific application, as well as a basis for the development of new methods.
The aim of this paper is to describe a general framework for texture analysis which we refer to as the HEP (histograms of equivalent patterns). The HEP, of which we give a clear and unambiguous mathematical definition, is based on partitioning the feature space associated to image patches of predefined shape and size. This task is approached by defining, a priori, suitable local or global functions of the pixels' intensities. In a comprehensive survey we show that diverse texture descriptors, such as co-occurrence matrices, gray-level differences and local binary patterns, can be seen all to be examples of the HEP. In the experimental part we comparatively evaluate a comprehensive set of these descriptors on an extensive texture classification task. Within the class of HEP schemes, improved local ternary patterns (ILTP) and completed local binary patterns (CLBP) emerge as the best of parametric and nonparametric methods, respectively. The results also show the following patterns: (1) higher effectiveness of multi-level discretization in comparison with binarization; (2) higher F. Bianconi performed this work as a visiting researcher in the accuracy of parametric methods when compared to nonparametric ones; (3) a general trend of increasing performance with increasing dimensionality; and (4) better performance of point-to-average thresholding against point-topoint thresholding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.