Conclusion. These findings suggest that a shifting of CD4؉CD161؉ T cells from Th17 to the Th17/Th1 or Th1 phenotype can occur in the SF of children with oligoarticular-onset JIA, and indicate that the accumulation of these cells is correlated with parameters of inflammation. Thus, the results support the hypothesis that these cells may play a role in JIA disease activity.
Purpose of reviewHuman eosinophils were first identified and named by Paul Ehrlich in 1879 on the basis of the cell's granular uptake of eosin. Although eosinophils represent approximately 1% of peripheral blood leukocytes, they have the propensity to leave the blood stream and migrate into inflamed tissues. Eosinophils and their mediators are critical effectors to asthma and eosinophilic granulomatosis with polyangiitis (EGPA). Eosinophils are equipped with a large number of cell-surface receptors and produce specific cytokines and chemokines.Recent findingsEosinophils are the major source of interleukin-5 and highly express the interleukin-5Rα on their surface. Clinical trials evaluating monoclonal antibodies to interleukin-5 (mepolizumab and reslizumab) and its receptor interleukin-5Rα (benralizumab) have been or are underway in patients with eosinophilic asthma, EGPA and chronic obstructive pulmonary disease (COPD). Overall, targeting interleukin-5/interleukin-5Rα is associated with a marked decrease in blood and sputum eosinophilia, the number of exacerbations and improvement of some clinical parameters in adult patients with severe eosinophilic asthma. Pilot studies suggest that mepolizumab might be a glucocorticoid-sparing treatment in patients with EGPA. A preliminary study found that benralizumab did not reduce the exacerbations and did modify lung function in patients with eosinophilic COPD.SummaryThe review examines recent advances in the biology of eosinophils and how targeting the interleukin-5 pathway might offer benefit to some patients with severe asthma, EGPA, and COPD. Interleukin-5/interleukin-5Rα-targeted treatments offer promises to patients with eosinophilic respiratory disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.