Modern catalysts for internal combustion engine applications are traditionally constituted by honeycomb substrates on which a coating of the catalytically active phase is applied. Due to the laminar flow of the gases passing through their straight channels, these structures present low heat and mass transfer, thus leading to relatively large catalyst sizes to compensate for the low catalytic activity per unit of volume. Better conversion efficiency can be achieved if three-dimensional periodic structures are employed, because of the resulting gases’ tortuous paths. Furthermore, the increased catalytic activity implies a reduction in the overall catalyst volume, which can translate to a decreased usage of precious metals as active phase. By exploiting the ceramic Stereolithography technique (i.e., SLA) it is nowadays possible to accurately 3D print complex alumina-based lattices to be used as ceramic substrates for catalysis. In this work, closed-walls lattices consisting of a rotated cubic cell of 2 mm dimensions were designed, 3D printed via SLA and finally washcoated with V2O5-WO3-TiO2. The samples were tested for the selective catalytic reduction of NO by NH3 in a heated quartz glass reactor and the performance of the innovative 3D-printed substrate was compared with the catalytic efficiency of the conventional cordierite honeycombs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.